Belief Logic is a process by which we can analyze protocols in a logical manner. We are not so much looking to prove these protocols secure; instead we wish to show that our authentication goals have been achieved. The symbols and constructs that we will use are listed below.

The symbols A, B and S denote specific principals. Principals can be people, computers or services. K_{AB}, K_{AS}, K_{BS} denote symmetric secret keys shared between A and B, A and S, and B and S, respectively. K_A, K_B, K_S denote the public keys of A, B, and S, while the inverses of these keys (e.g. $K_{A^{-1}}$) represents each principal's private key. The symbols N_A, N_B and N_S identify nonces as well as their creator. X and Y are statements or messages. The following constructs are used to show the usage and relationship for all principals, keys and statements.

$P \models X$: P believes that X is true.

$P \mathrel{\triangleleft} X$: At some point in time (past or present) P received some message X

$P \mathrel{\triangleright} X$: At some point in time P sent X. Also, at the time of sending, P believed X.

$P \mathrel{\Rightarrow} X$: P has jurisdiction over X, meaning other principals believe X if they believe P believes X.

$\sharp(X)$: X is fresh. X has not been sent at any time before the current run of the protocol. Nonces are expressions generated to prove freshness, and often include a timestamp. Without nonces, it is possible to get that not so fresh message feeling.

$P \mathrel{\leftrightarrow} Q$: P and Q share the key K and may use it to communicate. Furthermore, K will never be discovered by any principal except P, Q or a principal trusted by P or Q.

$P \mathrel{\rightarrow} K$: P has public key K. The private key K^{-1} will only ever been known to P or principals trusted by P.

${X}_K$: Represents X encrypted under key K. When K is a private key (e.g. $K_{A^{-1}}$) this represents a signature of X.

1. Message meaning rules concern the interpretation of messages. Rather than using the new symbols, we will write the English equivalents.

When using shared keys,

\[
\frac{P \text{ believes } Q \mathrel{\leftrightarrow} P \quad P \text{ has seen } {X}_K}{P \text{ believes } Q \text{ once said } X}
\]

When public keys are used,

\[
\frac{P \text{ believes } \mathrel{\rightarrow} Q \quad P \text{ has seen } {X}_{K^{-1}}}{P \text{ believes } Q \text{ once said } X}
\]

2. *Nonce-verification* rules show how to check that a message is fresh, and that the senders believes so as well:

\[
P \text{ believes } X \text{ is fresh, } P \text{ believes } Q \text{ once said } X \quad \quad \quad \quad \quad \quad \quad P \text{ believes } Q \text{ believes } X
\]

3. The *Jurisdiction* rule states that a principal *P* will trust the beliefs that *Q* has jurisdiction over.

\[
P \text{ believes } Q \text{ controls } X, \quad P \text{ believes } Q \text{ believes } X
\]

\[
P \text{ believes } X
\]

4. A principal that sees a formula in plaintext, also sees its components:

\[
P \text{ sees } (X, Y) , \quad P \text{ believes } Q^K \rightarrow P, P \text{ sees } \{X\}_K
\]

\[
P \text{ sees } X, \quad P \text{ believes } K \rightarrow Q, P \text{ sees } \{X\}_{K^{-1}}
\]

\[
P \text{ sees } X.
\]

Note that even if *P* sees *X* and *P* sees *Y*, then *P* does not necessarily see *(X, Y)*.

5. If any given part of a formula is fresh (and the formula cannot be altered), the entire formula must be fresh:

\[
P \text{ believes fresh}(X)
\]

\[
P \text{ believes fresh}(X, Y).
\]