A Logic of Authentication
by Burrows, Abadi, and Needham

Presented by
Adam Schuchart, Kathryn Watkins, Michael Brotzman, Steve Bono, and Sam Small

Agenda
• The problem
• Some formalism
• The goals of authentication, formalized
• The Needham-Schroeder Protocol
 • with shared keys
 • with asymmetric keys
Introduction

Hi, I am Adam →

← Hi, I am Dr. Masson

Let’s speak privately, use key K →

← {¿Whud up f00?}K

• Pairs of principals seek mutual authentication

• Pairs of principals want to share a secret

• Specifically, principals want assurance of their beliefs

• A variety of authentication protocols have been proposed
How can we be sure these protocols are secure?

The Plan

• We will define a logic of authentication in order to explain protocols step-by-step
• Initial assumptions will be made explicit
• The protocol goal will be clearly defined
In their own words...

“Our goal is not to provide a logic that would explain every authentication method, but rather a logic that would explain most of the central concepts of authentication.”

BAN Logic

• Attempts to validate solutions under the following framework using formal logic:
 • There exists a goal (e.g. authentication) that we want to achieve by using a certain message protocol
 • We are aware of the properties we want and need our protocol to exhibit
• We want to be satisfied that our protocol meets our goals

• We *do not* want to depend on trial by fire for this satisfaction

The BAN logic uses formal methods to answer the following:

• What does our protocol *really* achieve?

• What assumptions does our protocol make?

• Does the protocol use any redundant or unnecessary information?

• Does our protocol needlessly encrypt information?
The BAN logic does not attempt to answer:

- Are our assumptions reasonable?
- Do problems exist in particular implementations of the protocol?
- Do we use an inappropriate crypto-system?

Typically, we present protocols by symbolically denoting which principal sends what to whom.

E.g., $A \rightarrow B : (msg)_{K_{AB}}$
• This style is inconvenient for manipulation in logic

• We must transform our traditional protocol syntax into a logic syntax

• The transformations are will not be perfect, they produce messages of an idealized form

• This is OK if we annotate these new messages with assertions
$K \xrightarrow{\rightarrow} \{X\}_K$

$F \triangleleft X$
$G \sim X$

$\#(X)$
OK, enough hand-holding

Basic Notation

- A, B, and S denote specific principals (think, Alice, Bob, Server)
- K_{AB}, K_{AS}, K_{BS} denote specific shared keys
- K_A, K_B, K_S denote specific public keys
- K_A^{-1}, K_B^{-1}, K_S^{-1} denote specific private keys
More Basic Notation

- N_A, N_B, N_C denote specific statements
- P, Q, R refer to a generic instance of a principal
- X, Y refer to a generic instance of a statement
- K is generic and ranges over encryption keys

Constructs

$P \equiv X$	principal P believes statement X
$P \triangledown X$	principal P sees statement X
$P \rightrightarrows X$	principal P said statement X
$P \Rightarrow X$	principal P controls statement X
$\#(X)$	fresh(statement X)
More Constructs

<table>
<thead>
<tr>
<th>$P \leftrightarrow^K Q$</th>
<th>P and Q use the shared key K to communicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \leftrightarrow P$</td>
<td>P has K as a public key</td>
</tr>
<tr>
<td>${X}^K$</td>
<td>Statement X encrypted under key K</td>
</tr>
</tbody>
</table>

- If two separate encrypted sections are included in one message, treat them as if they arrived in separate messages.
- A message cannot be understood by a principal who does not know the key.
- The key cannot be deduced from an encrypted message.
- Principals can tell whether or not they have used the correct key after decryption.
- Principals can detect (and ignore) their own messages.
Rules of Inference

- *Message meaning rules* concern the interpretation of messages.
- When using shared keys, we assert:

\[
P \text{ believes } Q \leftrightarrow P, \quad P \text{ sees } \{X\}_K \quad \Rightarrow \quad P \text{ believes } Q \text{ said } X
\]

Something of the form:

\[
\begin{align*}
X \\
\hline
Y
\end{align*}
\]

simply means:

if \(X\) is true, then \(Y\) is true
P believes $Q \leftrightarrow^n P$, P sees $\{X\}_K$

P believes Q said X

If P believes that the key K is shared with Q and itself
If P believes that the key K is shared with Q and itself

and P sees X encrypted under K,

then P believes that Q once said X.
\[P \text{ believes } Q \leftrightarrow K \rightarrow P, \quad P \text{ sees } \{X\}_K \]

\[P \text{ believes } Q \text{ said } X \]

If P believes that the key K is shared with Q and itself and P sees X encrypted under K, then P believes that Q once said X.

For public keys:

\[P \text{ believes } K \rightarrow Q, \quad P \text{ sees } \{X\}_{K^{-1}} \]

\[P \text{ believes } Q \text{ said } X \]

If P believes that K is Q’s public key, and P receives a message encoded with Q’s secret key, then P believes Q once said X.
Rules of Inference

- The **nonce-verification** rule shows us how to assert that a message is fresh, and that the sender believes it is fresh.

\[
\begin{align*}
P \text{ believes fresh } (X), & \quad P \text{ believes } Q \text{ said } X \\
\hline
P \text{ believes } Q \text{ believes } X
\end{align*}
\]

If \(P \) believes that \(X \) could have been uttered only recently and that \(Q \) once said \(X \), then \(P \) believes that \(Q \) believes \(X \).

Rules of Inference

- The **jurisdiction** rule states that a principal \(P \) will trust the beliefs that \(Q \) has jurisdiction (or control) over.

\[
\begin{align*}
P \text{ believes } Q \text{ controls } X, & \quad P \text{ believes } Q \text{ believes } X \\
\hline
P \text{ believes } X
\end{align*}
\]
Rules of Inference

- If a principal sees a formula, he also sees its components, given he knows the necessary keys.

\[
\frac{P \text{ sees } (X, Y)}{P \text{ sees } X}, \quad \frac{P \text{ believes } Q \leftrightarrow P, P \text{ sees } \{X\}_K}{P \text{ sees } X},
\]

\[
\frac{P \text{ believes } K \rightarrow P, P \text{ sees } \{X\}_K}{P \text{ sees } X}, \quad \frac{P \text{ believes } K \rightarrow Q, P \text{ sees } \{X\}_{K-1}}{P \text{ sees } X}.
\]

Note that if P sees X and P sees Y, it does NOT follow that P sees (X, Y) since X and Y were not uttered at the same time.

Rules of Inference

- If one part of the formula is fresh, then the entire formula must be fresh:

\[
\frac{P \text{ believes } \text{fresh}(X)}{P \text{ believes } \text{fresh}((X, Y))}.
\]
Given the previous inference rules, we can construct proofs in the logic.

Protocol Analysis in the BAN Logic

- Create an idealized form of the protocol
- Assumptions about the initial state are written
- Logical formulas are attached to the statements of the protocol
- Logical postulates (inference rules) are applied to the assumptions and assertions
The Goals of Authentication, Formalized

A believes $A \leftrightarrow B$

B believes $A \leftrightarrow B$
\(A \) believes \(B \) believes \(A \overset{K}{\leftrightarrow} B \)

\(B \) believes \(A \) believes \(A \overset{K}{\leftrightarrow} B \)

\(A \) believes \(B \) believes \(X \)

or

\(A \) believes \(\overset{K}{\rightarrow} B \)
Needham-Schroeder Protocol (w/ shared keys)

Goals

- A believes $A \leftrightarrow B$
- B believes $A \leftrightarrow B$
- A believes $\text{fresh}(A \leftrightarrow B)$
- B believes $\text{fresh}(A \leftrightarrow B)$
- A believes B believes $A \leftrightarrow B$
- B believes A believes $A \leftrightarrow B$

Diagram:

![Diagram of the Needham-Schroeder Protocol]
Weeks Later, Mallory has discovered key K_{AB}. Mallory can then impersonate Alice to Bob.

Assumptions

A believes $A \xleftrightarrow{K_{ab}} S$

B believes $B \xleftrightarrow{K_{bs}} S$

S believes $A \xleftrightarrow{K_{as}} S$

S believes $B \xleftrightarrow{K_{bs}} S$

S believes $A \xleftrightarrow{K_{ab}} B$
A believes S controls $A \overset{K_{ab}}{\leftrightarrow} B$

B believes S controls $A \overset{K_{ab}}{\leftrightarrow} B$

A believes S controls fresh($A \overset{K_{ab}}{\leftrightarrow} B$)

A believes fresh(N_a) B believes fresh(N_b)

S believes fresh($A \overset{K_{ab}}{\leftrightarrow} B$) B believes fresh($A \overset{K_{ab}}{\leftrightarrow} B$)
Message 2

A sees \(\{N_a, A \xleftarrow{K_{ab}} B, \text{ fresh}(A \xleftarrow{K_{ab}} B), \{A \xleftarrow{K_{ab}} B\}_K_{bs}\}_K_{as} \)

\[\begin{align*}
A &\text{ believes fresh}(N_a) \\
&\text{ A believes fresh}(N_a, A \xleftarrow{K_{ab}} B, \text{ fresh}(A \xleftarrow{K_{ab}} B))
\end{align*}\]

By the *nonce-verification* rule:

\[\begin{align*}
A &\text{ believes fresh}(A \xleftarrow{K_{ab}} B), \quad A \text{ believes S said } A \xleftarrow{K_{ab}} B \\
&\text{ A believes S believes } A \xleftarrow{K_{ab}} B
\end{align*}\]

By the *jurisdiction* rule:

\[\begin{align*}
A &\text{ believes S controls } A \xleftarrow{K_{ab}} B, \quad A \text{ believes S believes } A \xleftarrow{K_{ab}} B \\
&\text{ A believes } A \xleftarrow{K_{ab}} B
\end{align*}\]
Message 3

\[B \text{ sees } \{A \leftrightarrow B\}_{K_{bs}} \]

By decrypting the message: \(B \) believes \(S \) once said \(A \leftrightarrow B \)

But is \(A \leftrightarrow B \) fresh?

Let’s just ASSUME \(B \) believes fresh(\(A \leftrightarrow B \)) (so says the paper)

\[
\begin{align*}
\text{B believes fresh(} A \leftrightarrow B \text{),} & \quad \text{B believes S said } A \leftrightarrow B \\
\text{B believes S believes } A \leftrightarrow B \\
\text{B believes S controls } A \leftrightarrow B , & \quad \text{B believes S believes } A \leftrightarrow B \\
& \quad \text{B believes } A \leftrightarrow B
\end{align*}
\]

Message 4

\[A \text{ sees } \{N_b, A \leftrightarrow B\}_{K_{ab}} \]

\[
\begin{align*}
\text{A believes fresh(} A \leftrightarrow B \text{),} & \quad \text{A believes B said } A \leftrightarrow B \\
\text{A believes B believes } A \leftrightarrow B
\end{align*}
\]

Message 5

\[B \text{ sees } \{N_b, A \leftrightarrow B\}_{K_{ab}} \]

\[
\begin{align*}
\text{B believes fresh(} N_b \text{),} & \quad \text{B believes A said } (N_b, A \leftrightarrow B) \\
\text{B believes A believes } A \leftrightarrow B
\end{align*}
\]
Finally

A believes $A \overset{K_{ab}}{\leftrightarrow} B$
B believes $A \overset{K_{ab}}{\leftrightarrow} B$

A believes $\text{fresh}(A \overset{K_{ab}}{\leftrightarrow} B)$
B believes $\text{fresh}(A \overset{K_{ab}}{\leftrightarrow} B)$

A believes B believes $A \overset{K_{ab}}{\leftrightarrow} B$
B believes A believes $A \overset{K_{ab}}{\leftrightarrow} B$

Next Week...