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Abstract

Particle filtering is a very popular technique for sequen-
tial state estimation. However, in high-dimensional cases
where the state dynamics are complex or poorly modeled,
thousands of particles are usually required for real applica-
tions. This paper presents a hybrid sampling solution that
combines RANSAC and particle filtering. In this approach,
RANSAC provides proposal particles that, with high proba-
bility, represent the observation likelihood. Both condition-
ally independent RANSAC sampling and boosting-like con-
ditionally dependent RANSAC sampling are explored. We
show that the use of RANSAC-guided sampling reduces the
necessary number of particles to dozens for a full 3D track-
ing problem. This is method is particularly advantageous
when state dynamics are poorly modeled. We show empiri-
cally that the sampling efficiency (in terms of likelihood) is
much higher with the use of RANSAC. The algorithm has
been applied to the problem of 3D face pose tracking with
changing expression. We demonstrate the validity of our
approach with several video sequences acquired in an un-
structured environment.

Key words: Random Projection, RANSAC, Particle Fil-
tering, Robust 3D Face Tracking.

1 Introduction

In recent years there has been a great deal of interest in ap-
plying Particle Filtering (PF), also known as Condensation
or Sequential Importance Sampling (SIS [16, 17]), to com-
puter vision problems. Applications on parameterized or
non-parameterized contour tracking [13, 14, 28], and hu-
man tracking [3, 18] have demonstrated its usefulness.

However, the performance of SIS depends on both the
number of particles and the accuracy of the dynamic model.
Given a specific error margin, the number of the particles re-
quired is generally determined by the dimension and struc-
ture of the state space [7]. A typical 6-DOF tracking prob-
lem usually requires thousands of particles [7]; reducing

the number of particles by training a finely tuned dynamic
model is not trivial [20] and sometimes not even possible.

On the other hand, the RANSAC algorithm [8] is often
applied as a robust estimation technique. The basic idea
behind RANSAC is to evaluate many small batches of ob-
servations, and from those to choose a larger set of “good”
observation from which a robust state estimate can be pro-
duced. Although well-suited for producing single state esti-
mates, RANSAC by itself does not preserve multiple solu-
tions from frame to frame in a probabilistic inference frame-
work.

In our proposed algorithm RANSAC-PF (or RANSAC-
SIS), randomly selected feature correspondences are used to
generate state hypotheses between pairs of frames in video
sequences. However, instead of looking for a single best
solution, the projections are used to guide the propagation
of resampled particles. These particles are then reweighted
according to a likelihood function and resampled. Conse-
quently, the combined process not only serves as a robust
estimator for a single frame, but provides stability over long
sequences of frames.

The evaluation of solution quality is an issue of critical
importance for all tracking problems, stochastic or deter-
ministic. With the sampling concept, it is straightforward to
infer the tracking quality from the state parameters’ poste-
rior probabilistic distribution. We define an entropy-based
criterion to evaluate the statistical quality of the tracked den-
sity function. In addition to providing a quality measure,
the entropy values computed during tracking can help us
extract some well tracked frames as exemplars [28]. When
necessary, these exemplars can be archived as ”key frames”
which are used to further stabilize the tracking.

The remainder of this paper is organized as follows. Re-
lated work is presented in section 2, followed by a descrip-
tion of the RANSAC-PF algorithm in section 3. In section
4, we discuss the sampling efficiency of RANSAC-PF. Sec-
tion 5 describes a 3D face tracking application that uses our
RANSAC-PF algorithm and presents experimental results.
Finally, we offer conclusions and discuss future work.
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2 Related Work

Deterministic parameter estimation algorithms, e.g. linear
mean-square methods, normally produce more direct and
efficient results when compared with Monte Carlo-style
sampling methods. On the other hand, deterministic algo-
rithms are unfortunately easily biased and cannot recover
from accumulated estimation errors. Robust estimators,
such as LMedS [33] and MLESAC [25], follow the strat-
egy of ”Winner Takes All” to get, with high probability,
the maximum likelihood (ML) estimate from contaminated
data. However, as discussed in the next section, those esti-
mators are are often not suitable for a sequential estimation
problem for a dynamic system because the estimation er-
ror in each stage can accumulate and result in failure on
sequential data.

Particle filters (or, more generally, sequential important
sampling [?]), are a family of techniques for recursive esti-
mate that use sampling methods to approximate the optimal
Bayesian filter. However, it is shown in [12] that sequential
importance sampling or particle filtering may have non-zero
probability to condense into an incorrect absorbing state
when the number of samples are finite, even though par-
ticle filtering techniques can, under suitable assumptions,
be accurate in an asymptotic sense. In our work, we pro-
pose a hybrid sampling approach to achieve a good bal-
ance of sampling efficiency and dynamic stability. From
a particle filter viewpoint, both random geometric projec-
tions from RANSAC sampling of image features and im-
portance resampling guide the time series evolution of state
particles. Generally, simple resampling includes many low
weight particles and thus generates poor results. Tu et al.
showed that using data-driven techniques (like RANSAC in
our case), such as clustering and edge detection, to com-
pute importance proposal probabilities (for particle filter in
our case), effectively drives the Markov chain dynamics and
achieves tremendous speedup in comparison to the tradi-
tional jump-diffusion method [29].

There are several other papers integrating particle filters
with variational optimization or observation-based impor-
tance functions. Sullivan et al. showed in [24] that random
particles can be guided by a variational search, with good
convergence when the image differences between frames
are low. They used a predefined threshold to switch between
the probabilistic and deterministic tracking engines. Isard et
al. [14] presented an approach (ICondesation) to combine
low-level and high-level information by importance resam-
pling with a particle filter.

In more closely related work, Torr and Davidson [26]
compute structure from motion by hybrid sampling (IMP-
SAC). They built a hierarchical sampling architecture with
a RANSAC-MCMC estimator at the coarse level and a SIR-
MCMC estimator at the finer levels. In this paper, we

use sequential sampling-importance-resampling (SIR) tech-
nique to regularize and smooth the object pose estimation
from spatial RANSAC sampling. As such, our technique
considers the robust estimation problem from the viewpoint
of time series analysis, while Torr et al. constrained the out-
put of RANSAC with a MCMC formulated building model
in 3D scene reconstruction.

To demonstrate the efficacy of our technique, we develop
a system for 3-D face pose tracking. Although there are
many solutions for 3-D face pose tracking, most algorithms
are some variation on direct methods (e.g. SSD tracking)
or feature-based matching. SSD-like methods [9, 15, 32, 1]
have attracted much interest and have become a standard
technique for many tracking problems. However, a classi-
cal deterministic SSD tracker requires a good prediction of
target location in order to converge reliably. As a result, un-
expected motion jumps can cause loss of tracking, and thus
require additional apparatus to guarantee robustness [27].

On the other hand, feature-based methods have the ad-
vantage of potentially providing good solutions, provided
stable features and good correspondences are available. The
advantage of particle-filtering-based methods is that such a
correspondence need not be produced explicitly, but is im-
plicit in the likelihood function. Thus, good sampling com-
bined with a good likelihood function can yield good track-
ing results, even in cluttered situations [18]. However, in
cases where motions are abrupt and poorly modeled, and
features are unstable, particle-based methods can still fail
unless extremely large numbers of samples are generated.
For this reason, the majority of particle-filter-based visual
tracking consider restricted cases of two-dimensional mo-
tion. By including an explicit correspondence search as part
of the sampling process, we are able to achieve comparable
tracking results [15] under many strong distractions, with
much fewer (50 ∼ 200) particles, auto-recoverable for a
full 3-D pose tracking problem.

We also develop a boosting-like RANSAC method to
even more efficiently sample particles from the image ob-
servations. Okuma et al. [21] utilize Adaboost [31] to
generate new detection hypotheses of mixture particle fil-
tering for multi-target tracking. In comparision, we employ
the boosting principle to guide the interaction of sampling
between two particles. Our method is similar in nature to
the iteratively boosted mixture modeling of Pavlovic [23].
He describes an optimization based approach to maximize
the data’s likelihood given an estimated Gaussian mixture
model. Data are then weighted inversely to their current
likelihood values and these weights are then used to to cal-
culate the new kernel of the mixture, and so on. As a result,
data poorly represented by the previous mixture model have
more weights in the next time step.
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(a) (b) (C)

Figure 1: An example of RANSAC sampling of feature points
(red dots are inliers, and green squares are outliers.) to track planar
motions.

3 The RANSAC-PF Algorithm

3.1 Motivation

In order to motivate RANSAC-PF, consider the situation
shown in Figure 1. Here we consider in-plane rotations
and translations of a planar object through three frames of
a video sequence. In each frame, a set of feature points
{z(t)

i } are detected on the object. Some of these features
are common among frames, and some are inconsistent or
spurious. To track the object, we make use of RANSAC
[8] to compute the incremental motion between successive
frames, and then integrate these solutions over time to com-
pute a state estimate. While this is computationally con-
venient, the lack of distributional information means that
a single incorrect estimation step can be disastrous. More
precisely, RANSAC samples some a number, l of subsets of
the observed features. Let q denote the probability that one
or more of these l subsets yields a correct correspondence
which is detected by RANSAC. Although q can, in prin-
ciple, be made arbitrarily large by increasing l, it will still
generally be less than 1. As a result, the overall probability
of consistently correct solutions over t frames, qt, quickly
decreases to zero as t grows. One way to avoid this problem
is to include a time series model that maintains and regular-
izes multiple solutions over time. This is exactly the goal of
our RANSAC-PF algorithm.

In Figure 2, we show the simulated results of RANSAC
while tracking a planar patch. The patch is moving forward
while rotating in the plane. The blue line is the ground
truth of in-plane rotation angles, the magenta line is the
RANSAC tracking result when sub-pixel feature match-
ing accuracy is unavailable, and the black line is the re-
sult when matching outliers are introduced. We also test
the RANSAC-PF algorithm (introduced formally in the next
section) on the synthesized sequence. In the figure, the red
line is the trajectory of the particle with maximal weight at
each time point (an approximation to the MAP estimate),
and the green line is the mean state value at each time point.
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Figure 2: Feature based tracking for a planar patch’s cyclic in-
plane motion sequence. Blue represents ground truth of rotation
angles; black and magenta represent the results of RANSAC with
and without outliers, respectively. The results for RANSAC-PF
are: red, highest weighted particle, and green, mean state value. In
most cases, the latter are closely superimposed with blue.

In this simple case, drift in the parameter estimation from
RANSAC is clearly visible, while there is no apparent drift
with RANSAC-PF using only 100 particles.

For a second example, we use a particle filter to track a
sequence of simulated data. A 2nd order Markov dynamics
is adopted and the state is directly observed under Gaussian
noise. The observation likelihood function is computed
based on the difference with the ground truth state and is
also Gaussian. Figure 3 shows the simulation results for a
classical particle filter tested on various state dimensional-
ities. Qualitatively, we see that even when estimating only
2 parameters, a 200-particle filter tends to compute poor
solutions after 200 to 300 frames. It is evident the results
for 6 DOF tracking are meaningless with 800 particles. In
short, the performance of the particle filter degrades dramat-
ically when the number of dimensions of the state space in-
creases. This is consistent with actual practice, where a few
thousand particles are used for 2D (four parameter) person
tracking applications [7] and also reflect the results of King
et al. [12].

3.2 The General Algorithm

We consider the object being tracked as described with
known models but unknown parameters (or state) X . Given
an observation Z(t) of the object for each image frame t, the
objective is to estimate the object state X(t) at every time-
step (frame) t. We assume that the underlying observation
and dynamic models F and G are known:

Z(t) = F (X(t), η) (1)

X(t) = G(X(t−1), ζ) (2)

where the noise terms η and ζ have known or assumed
distribution. We note that the image likelihood function
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Figure 3: We simulate the tracking accuracy with varying numbers of particles in 2, 4 and 6 state space dimensions. Because data is
synthesized, the ground truth is known and used to observe the likelihood via an independent Gaussian process assumption. To illustrate,
only the tracking results of parameter 1 (no physical meaning) is shown; similar results are obtained for other parameters. (a) 200 Particles
for 2 parameters (b) 200 Particles for 4 parameters (c) 200 Particles for 6 parameters (d) 800 Particles for 6 parameters. Colors code same
information as in figure 2.

L(Z(t);X(t)) = p(Z(t)|X(t)) and the state propagation
function p(X(t)|X(t−1)) can be derived from this stated in-
formation.

Let Z(t) be a set of M (t) elements {z(t)
i }:

z
(t)
i = fi(X(t), η), i = 1, . . . , M (t) (3)

We assume that X(t) can be computed from Zp, a subset
of all M (t) elements of observation and, optionally, a prior
state value X(t−1). Let R(Zp;X(t−1)) denote this function
which is essentially an inverse of (1). A specific instantia-
tion for face tracking is given in section 5.

We introduce a set of particles {x(t)
i }N+Q

i=1 and their rel-

ative weights {ω(t)
i }N+Q

i=1 that are maintained for all time-
steps t as a representation of the posterior distribution
p(X(t)|Z(t)). Naturally, any function e of X(t) can be esti-
mated by

e(X(t)) =
N+Q∑
i=1

ωie(x
(t)
i ) (4)

With these definitions, we can see from Figure 4 that
RANSAC-PF operates roughly as follows. For each frame
t, particles are generated using R(Zp;X(t−1)) by ran-
domly selecting Zp and X(t−1) and computing X(t). Op-
tionally, some other particles are sampled from the dynamic
model p(X(t)|X(t−1)) using randomly resampled particles
of X(t−1). These two sets of particles can be mixed to-
gether. Weights ω

(t)
i are then computed using the image

likelihood function L as is normally done in importance
sampling. Note that our RANSAC-PF algorithm does not
necessarily need to be combined with the standard particle
filtering, but this combination makes it convenient to com-
pare these two algorithms in the subsequent experiments.
A graphical model representation of the algorithm is illus-
trated in Figure 5.

3.2.1 Conditional independent/ dependent RANSAC
sampling

We have also included a boosted version of RANSAC-
PF in Figure 4. The simple RANSAC sampling proce-
dure produces current particles in the state space without
further evaluating the particles produced in previous sam-
ples. In order to increase the sampling efficiency, especially
for multi-modal density functions, we have found that a
boosting-like strategy improves algorithm performance. To
illustrate the idea, consider again the feature based planar
tracking problem in Figure 2. Any selection of two pairs
of feature correspondences can be used to calculate a so-
lution for the translation and rotation parameters. Assume
now that there are three independent motions, with one half
of the feature points following one motion and a quarter
of feature points following each of the other two motions.
Therefore, we can obtain a correctly sampled hypothesis
of the motion only when the pair of selected feature corre-
spondences belong to the same motion mode. Otherwise, a
faulty particle hypothesis is generated from features of dif-
ferent motions. Thus, the probability that the first motion is
sampled is 1/4 = (1/2)×(1/2), the probability of the other
two motions being sampled is 1/16 = (1/4) × (1/4), and
random faulty hypotheses are generated with the remaining
probability of 5/8 = 1 − 1/4 − 1/8. As a result, a correct
state hypothesis has the probability of only 3/8 of being
generated. This is referred to as the sampling efficiency,
Ps. In practice, Ps is should be as large as possible.

The boosting-like heuristic in Figure 4 means that the
features that are consistent with a current hypothesis have a
higher chance to be selected to generate the next hypothesis.
In the case when correct and incorrect matches are perfectly
distinguished, the corresponding probabilities are 1/2, 5/9
or at least 3/81. As a result, the sampling efficiency of the

1Assume that the first mode is first sampled by the particle and all the
features associated with this motion are not eligible for the sampling of
next particle. Because there are half and half features left for mode 2 and

4



RANSAC Particle Filtering Algorithm
inputs: Z(t); x̂(1) and x̂(2); N ; Q; BoostFlag;
outputs: X(t)

a) From the initial results x̂(1), x̂(2), construct particles for
the first two frames.

• x
(1)
i = x̂(1), i = 1, . . . , N

• x
(2)
i = N (x̂(2), σ), i = 1, . . . , N , where N is a Nor-

mal diffusion function.

b) From the previous particle set {(x(t−1)
i , ω

(t−1)
i )}N

i=1 at

time t−1, construct a new particle set {(x(t)
i , ω

(t)
i )}N

i=1 for
time t by

1. If (BoostFlag = False)
For i = 1, . . . , N , generate x

(t)
i by

(a) Randomly select x
(t−1)
i with probability ω

(t−1)
i .

(b) Uniformly Randomly select a subset Zp of Z(t)

from M (t) features (RANSAC).

(c) Let x
(t)
i = R(Zp;x

(t−1)
i ).

2. If (BoostFlag = True)
For i = 1, . . . , N/2, generate x

(t)
i and x

(t)
i+N/2 by

(a) Randomly select x
(t−1)
i with probability

{ω(t−1)
i }.

(b) Uniformly randomly select a subset Zp of Z(t)

from M (t) features (RANSAC).

(c) Let x
(t)
i = R(Zp;x

(t−1)
i ).

(d) For j = 1, . . . ,M (t), weight each feature

j as ν
(t)′

j = 1/p(z(t)
j |x(t)

i ) and ν
(t)
j =

ν
(t)′

j /
∑N

i=1 ν
(t)′

j .

(e) Randomly select a subset Zp of Z(t) from

M (t) features with probability {ν(t)
j } (Boosted-

RANSAC).

(f) Let x
(t)
i+N/2 = R(Zp;x

(t−1)
i ).

3. i = N + 1, . . . , N + Q, generate x
(t)
i and by Let

x
(t)
i = G(X(t−1), ζ).

4. For i = 1, . . . , N +Q, compute ω
(t)′

i = L(Z(t);x(t)
i )

and ω
(t)
i = ω

(t)′

i /
∑N+Q

i=1 ω
(t)′

i .

Figure 4: The RANSAC-PF algorithm.

3, the probability Ps becomes 1/2 = (1/2∗1/2+1/2∗1/2). Similarly,
Ps = (2/3 ∗ 2/3 + 1/3 ∗ 1/3) for the cases that mode 2 or 3 is first
sampled; Ps = (1/2 ∗ 1/2 + 1/4 ∗ 1/4 + 1/4 ∗ 1/4) for the case that no
motion mode is first sampled.

tX tXtX

tZ
tZ tZ

),,( tttt XZZfX )|( tt XZp-1 -1=

-1

-1

+1

+1

Figure 5: A graphical representation of RANSAC-PF where the
new state Xt is a function of new observation Zt, former observa-
tion Zt−1 and state Xt−1.

next particle is now even higher. In the sequel, the parti-
cle sampled from the reweighted image features (Step 2f of
Figure 4) is called the dual of the current hypothesis.

We note that there are several other possible boosting al-
gorithms. For example, in the current algorithm all particles
from RANSAC-PF are independently sampled, while the
boosted RANSAC-PF particle set consists of half RANSAC
produced hypothesis and half their boosted dual particles.
An possible alternation is to first sample all RANSAC par-
ticles according to their weights (likelihood), then sample
their dual particles. For more complex density model, a
cascaded boosting scheme may be used [31].

3.2.2 Comparison of multi-modal density tracking

In Figure 6, we show the results of simulating multi-modal
density tracking results for with four different algorithms.
The underlying motion density function has three modes
with 1/2, 1/4 and 1/4 supporting features, respectively. We
synthesize a sequence with 800 frames and assume that the
positions of feature points are detected without errors. We
compare the four trackers’ performance on density function
approximation accuracy in terms of keeping all the three
modes during tracking. For better visualization, we convert
the weighted particle representation of the density function
into a histogram model using Parzon window integration
[5]. From Figure 6 (a) and (b), our proposed RANSAC-
PF and boosted RANSAC-PF successfully track the three
modes very accurately without any prior knowledge of the
underlying density function. Boosted RANSAC-PF further
increases the sampling efficiency by having more particle
weights concentrated on the three motion modes.

By comparison, a vanilla particle filtering algorithm can
theoretically track multi-modal functions, but it normally
requires a very large number of particles in the absence of
a well tuned dynamical model. In order to generate parti-
cles covering the three modes, we use a constant velocity

5



(a) (b)

(c) (d)

Figure 6: The comparison of multi-modal density tracking on in-plane rotation. There are three modes in the underlying density function.
The synthesized sequence contains 800 frames. 600 particles are used for tracking, and the density function is visualized as a histogram
representation of 608 bins in each frame. (a) (Conditional independent) RANSAC particle filtering (b) Conditional dependent) boosted
RANSAC particle filtering (c) Particle filtering with one diffused dynamics (d) Particle filtering with three switched dynamics.

dynamic model with large diffusion. The tracking result
in Figure 6 (c) demonstrates its inability to represent the
multi-modal density with 600 particles. Assuming we know
a priori of the three density modes, we can also design a
switched model of three dynamics with tight diffusions for
each mode [22]. In Figure 6 (d), the density functions con-
verge to have three modes after about 400 frames. However,
the results are no better than boosted RANSAC-PF, which
has no prior knowledge.

4 Sampling Efficiency and Tracking
Evaluation

4.1 Sampling Efficiency

The key of the success of particle filtering is to adaptively
concentrate particles in regions of high posterior/likelihood
probability by resampling [2], while still guaranteeing fair

sampling of the space. In Figure 7, we show the parti-
cles’ likelihood values (weights in factored sampling [13])
extracted from a face video sequence. For comparison,
red circles represent particles driven by RANSAC-PF and
blue stars are particles propagated through a second order
Markov dynamics. In Figure 7 (a), there are a few high
weight blue stars appearing in the cloud of red dots. As
time passes, both red and blue particles initially decrease
their weights in (b), then stabilize their weights at a rea-
sonable level. (c) depicts a hard-to-track frame with very
poor object appearance2 resulting in even lower weights.
However, the clear recovery is found in (d) where the parti-
cles’ likelihood values return to the same level as (b). The
likelihood distribution of blue particles is normally a very
few high stars with mostly low ones, while the red particles
maintained by RANSAC-PF have an opposite distribution.

2The subject’s face is turning down deeply, so the face region is small
and highly tilted. It causes difficulties for any face tracker.
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(a) Frame 3 (b) Frame 105 (c) Frame 360 (d) Frame 425

Figure 7: The likelihood distribution of particles in a video sequence. There are 100 (blue star) dynamics driven particles and 100 (red
circle) RANSAC-PF guided particles).)

4.2 An Entropy-Based Criterion for Track-
ing

While the mean of weighted particles can serve as a repre-
sentative or estimate of the set of particles, it is the entire
set that does the tracking. To evaluate how well it is doing,
we introduce an entropy based criterion. The entropy of a
probability distribution p(x) is defined as

H = −
∫

x

p(x) log2 p(x) dx (5)

Since we are tracking only one object configuration, a sin-
gle sharp peak of the posterior distribution is ideal, while a
broad peak probably means poor or lost tracking. Entropy
can be used as a scale to discriminate between these two
conditions. Low entropy means less tracking uncertainty,
thus better performance.

Nevertheless, the weighted particles {xi, ωi}N
i=1 are only

a set of samples from a probability distribution p(x), not the
distribution itself. There are a number of ways to estimate
the entropy of underlying distribution. The simplest method
is to compute the entropy directly from weights of discrete
samples:

H ′ = −
N∑

i=1

ωi log2 p(xi) = −
N∑

i=1

ωi log2 ωi (6)

H ′ converges to H when N approaches infinity, but they
may have a significant difference when N is small. An
alternative in this case is to include a window function to
spread the support of a particle like a kernel. We have per-
formed numerical evaluations that suggest there is no signif-
icant difference between these two methods with 50 ∼ 200
particles. While the entropy itself is a good indicator, we
sometimes need to better discriminate between unimodal
and multi-modal distributions. To do so, we artificially
merge any pair of particles into one super-particle provided
they are near enough in state space. In this way, we further
lower the outputs of entropy-estimate functions for single
mode distributions; thus promoting them.

5 Experiments on 3-D face tracking

The diagram of our face tracking system is shown in Figure
8 (a). We use a generic triangle based face model, which
is highly parameterized and can be easily manipulated with
geometric modeling software. Different from [30], the ap-
proximate 3D face models are sufficient to achieve the rea-
sonable good tracking results in our experiments.

When initiating tracking, we register the generic 3D
model to the first video frame by manually picking 6 fidu-
cial (mouth and eye) corners in the face image. A two-view
geometric estimate [6, 33] is then computed for the face
pose on the next frame, followed by a Gaussian diffusion.
Consequently, x̂(1) and x̂(2) are obtained as the state vectors
that encode the face pose (three components for rotation and
three components for translation). Tracking in subsequent
frames proceeds as described below.

5.1 Feature Detection and Random Projec-
tion

In our face tracking application, we first detect Harris-like
[10] image corner features in two frames. Then, a cross
correlation process for feature matching and a rough fea-
ture clustering algorithm based on epipolar geometry are
performed to form an initial set of corresponding feature
pairs. To compute a relative pose change, we spatially and
uniformly sample 9 matched image features between two
frames by RANSAC, illustrated in Figure 9 (c). We now
obtain a set of feature matches {(m(t−1)

j ,m(t)
j )}, where

m(t−1)
j and m(t)

j are a pair of (possible non-perfectly)
matched points in two successive images. For each point
mt−1

j in the reference image, we cast a 3D ray from the
camera center through that point, and compute the inter-
section Zj of that ray with the face mesh model, using a

resampled pose state x
(t−1)
i at frame (t − 1). The relative

pose T̂i =
(

R̂i t̂i
0T 1

)
can then be computed according to

7



Image Frame: t-1 Image Frame: t

Select 9 pairs of image
feature by RANSAC

Select 9 pairs of image
feature by RANSAC

3D Face Model

3D Facial
Features

Particle Geometrical
Projection

Face Pose PDF  at Image
Frame: t

Particle Importance
Resampling

tX

Face Pose PDF  at Image
Frame: t-1

)( tXP

t
ix

Particle Filtering

)( tXP

-1

tX

t
ix

-1

-1

Figure 8: Diagram of RANSAC-PF as applied to 3D face pose tracking. (b) The graphical representation of RANSAC-PF where the new
state Xt is a function of new observation Zt, former observation Zt−1 and state Xt−1.

(a) (b) (c) (d)

Figure 9: The initialization process of face tracking. (a) The initial frame is manually aligned with a 3D face model using 6 fiducial
corners. (b) The next frame is tracked through the two-view motion estimation. The RANSAC-PF tracking begins from the third frame. We
show the Maximum A Posterior (MAP) result with a red color reprojected face mesh overlaid on the images, while the mean of weighted
particles (MWP) with a black color. (c)MAP and MWP are different at the beginning frames of the RANSAC-PF tracking. (d) MAP and
MWP converge together quickly.

the following equation

APT̂iZ̃j = λm̃t
j (7)

where Z̃j = (ZT
j , 1)T and m̃j = (mT

j , 1)T . The intrinsic
matrix A, the standard projection matrix P , Zj and mt

j are
known. Each of the above equations gives two constraints
on T̂i. We compute T̂i with a linear least-squares technique3

described in [6]. A pair of (R̂i, t̂i) corresponds to a certain
particle as X

(t)
i . Therefore, this linear geometric projection

behaves as a bridge between the propagation of state parti-
cles from X

(t−1)
i to X

(t)
i , i = 1, . . . , Np on frame t. We

call this process random projection (RP). An illustration of

3We use 9 as the number of image features for the random projection in
our algorithm. In theory, 3 is the minimal possible number to compute the
3D object pose. By considering the sub-pixel matching errors, too few (ie,
3) features can not provide stable geometric estimates normally. On the
contrary, too many features lose the advantage of robustness by random
sampling. We empirically find 9 is a good number for the trade-off. More
theoretical and experimental analysis will be explored for future work.

the random projection procedure is demonstrated in Figure
10 (a,b,c).

5.2 Dynamics and Image likelihood

Image observations are modelled as a Gaussian process.
With each x

(t)
i and its former state history x

(t−1)
i , we can

project the position of image point features at image (t− 1)
to image (t). The reprojection errors are the 2D Euclidean
distances d2

m between image features (u(t)
m , v

(t)
m ) at frame t

and reprojected image features (ũ(t)
m , ṽ

(t)
m ).

d2
m = (u(t)

m − ũ(t)
m )2 + (v(t)

m − ṽ(t)
m )2 (8)

Then the conditional probability for likelihood is

p(z|x) ∝ 1√
2πσ

∑
m

e−
d2

m
2σ2 (9)

where the standard derivation σ can be estimated from the
set of all feature reprojection distances {dm} for each pair
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(a) (b) (c) (d)

Figure 10: (a) A particle of head pose is overlaid in current frame. (b) Some facial image feature correspondences between the current
and next frame are established. (c) The particle is projected into the next frame via random selected image features. (d) Image features are
selected spatially and uniformly via RANSAC.

of x
(t−1)
i and x

(t)
i . In the experiments, we set σ to 2.5 pixels

for simplicity. No apparent improvement was found when
estimating σ from data.

5.3 Tracking Results

We use a simple constant velocity model to guide the tem-
poral evolution of particle filtering.

In Figure 9, we show a short face tracking video (Com-
parison.avi)4 with large out-of-plane rotations. In this case,
a subject’s face is considered as a rigid object without fa-
cial expressions. From this figure, reasonable tracking ac-
curacy5 is achieved, although the generic face model is not
very accurate for the given subject and feature mismatch-
ing does exist. After few frames, the estimates of MAP and
MWP estimates converge together.

For the convenience of comparison, we generalize our
RANSAC-PF algorithm with particles guiding by a sec-
ond order Markov (constant velocity) dynamics in parallel
(see the dashed line in Figure 8). The results on the above
short sequence (Comparison.avi) is shown in Figure 11. We
name the particles driven by RANSAC-PF RP (random pro-
jection) particles, and the others as DP (dynamic propaga-
tion) particles. Note that the constant velocity dynamics
can be considered as a reasonable assumption for this sim-
ple yawing video sequence. Nevertheless, the tracking in
Figure 11 (c) is quickly lost due to the relatively small num-
ber of particles according to the 6-DOFs required by 3D
tasks. On the other hand, our algorithm performs better
with the same or smaller number of total particles. From
Figure 11 (a) and (Comparison.avi), good tracking results
are obtained with 100 RP particles and 100 DP ones. When
reducing the RP particles to 10 in Figure 11 (d), slight track-
ing accuracy is lost for MWP and the MAP results become to
flicker around MWP estimates. It means that the computed

4All the video can be accessed from
http://www.cs.jhu.edu/ lelu/RansacPF.htm

5Since we do not have the ground truth for tracking, no explicit numer-
ical comparison is provided. The validity is shown by overlaying the 3D
face mesh model to images.

MWP is stable and MWP is not. Here 10 can be thought
of as a lower bound for the number of RP particles. The
decrease of DP particles (comparing (b) to (a) in figure 11)
does not apparently influence tracking quality.

We also tested our algorithms on tracking people faces
from different races. Two video sequences (cher.avi, don-
ald.avi) are linked in author’s website. (Cher.avi) has mod-
erate expression changes and results in better tracking, com-
pared to (donald.avi), where intensive expressional defor-
mations occur. Both of the videos (tracked with 80 par-
ticles) have long rotation ranges over 20 ∼ 30 seconds,
and subjects move their face arbitrarily. Automatic recov-
eries from poorly tracked frames can also be found. To test
the robustness to misalignments, we manually align the first
frame in the tracking sequence with some moderate errors.
Our algorithm shows the remarkable stability from Figure
12. The initial registration errors do not increase with time,
and a significant accumulation of tracking errors is not ob-
served. A general 3D face model is used for tracking though
particular adjustments of face model to a subject may im-
prove the tracking.

For quantitative evaluation of the tracking results, we
capture 2 video sequences of a subject moving his head
with motion capture device. Six optical markers in the sub-
ject’s helmet are tracked during head moving (for instance,
in Figure. 10 (a,b,c)), and the subject’s head poses are then
computed as the ground truth. As shown in figure 13, our
method can keep track of the subject’s head poses over the
large ranges. The average tracking errors of yaw, pitch and
roll are 4.6790o, 3.4715o and 4.3466o in the first video se-
quence (rigid face motions only) and 6.8714o, 3.6158o and
5.7456oin the second video sequence (moderate facial de-
formations).

The relative motion between successive frames is not re-
quired to be very smooth in our experiments. We have con-
cluded that random projection is most successful when han-
dling rotations of 0o to 5o degrees. One way to test this
robustness is to simply leave frames out. In experiments,
images used for tracking can be sub-sampled every 3 to 10

9



(a) (b) (c) (d)

Figure 11: The tracking result comparison of RANSAC-PF under different configurations. (a) 100 RP particles and 100 DP particles (b)
100 RP particles and 10 DP particles (c) 200 DP particles (d) 10 RP particles and 100 DP particles

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Robustness testing for two misaligned video sequences. (a) The initial frame with the visible alignment error of subject 1 (b)
Frame 195 (c) Frame 628 (d) Frame 948 (e) The initial frame with the visible alignment error of subject 2 (f) Frame 185 (g) Frame 255 (h)
Frame 285.

frames and we do not observe the evident degrading track-
ing results.

In our experiments, the entropy curve is very stable most
of the time as expected, indicating the stable tracking per-
formance. For the extreme cases (Figure 7 (c)), the entropy
value does increase. In Figure 14, we show three entropy
curves computed from equation 6 based on the discrete dis-
tribution representation (with a variation of merging the
close particles into a super ”particle” also) and the continu-
ous distribution approximation by Parzon window [5]. The
testing images are from cher.avi.

6 Summary and Future Work

In this paper, we have presented a stochastic technique for
full 3D face tracking with a small number of particles and
a weak dynamical model. The main feature of this algo-
rithm is a RANSAC-based image feature selection which

greatly improves the efficiency of the samples used by the
algorithm.

This algorithm presents several directions for further re-
search. Most importantly, we hope to offer a convergence
proof for this algorithm along the lines suggested in [4, 2].
In particular, we hope to show that some form of boosted
RANSAC is formally convergent. The latter shows great
promise at alleviating some of the problems identified in
[12] when tracking multi-modal densities. Further improv-
ing the boosting method is another direction that offers great
promise.

We also intend to improve and extend our work to multi-
face tracking. Our local feature matching algorithm is ex-
pected to distinguish features from different faces by ap-
pearance and spatial neighborhood constraints. This step
can help RANSAC generate proposals from each person’s
matched feature set respectively, while boosting will ensure
the multiple modes are maintained.

Finally, finding suitable methods to compute importance

10



0 100 200 300 400 500 600
−80

−60

−40

−20

0

20

40

60
Comparison of ground truth and tracking result of Yaw

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

0 100 200 300 400 500 600
−50

−40

−30

−20

−10

0

10

20

30
Comparison of ground truth and tracking result of Pitch

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

50

60
Comparison of ground truth and tracking result of Roll

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

(a) (b) (c)

0 100 200 300 400 500 600
−80

−60

−40

−20

0

20

40

60
Comparison of ground truth and tracking result of Yaw

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

0 100 200 300 400 500 600
−30

−25

−20

−15

−10

−5

0

5

10

15

20
Comparison of ground truth and tracking result of Pitch

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

0 100 200 300 400 500 600
−20

−10

0

10

20

30

40

50
Comparison of ground truth and tracking result of Roll

Image frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Ground truth
Tracking result

(d) (e) (f)

Figure 13: Comparison of the tracked rotations and the ground truth. The first row is a video sequence containing the rigid face motions
only; the second row is a video sequence containing some moderate facial deformations. (a) Yaw (b) Pitch (c) Roll (d) Yaw (e) Pitch 2 (f)
Roll.

proposal probabilities for Monte Carlo-style algorithms is
another area of future work.
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Particle filtering is a very popular technique for sequential 
  state estimation. However, in high-dimensional cases where the state 
  dynamics are complex or poorly modeled, thousands of particles are 
  usually required for real applications. This paper presents a hybrid 
  sampling solution that combines RANSAC and particle filtering.  In 
  this approach, RANSAC provides proposal particles that, with high 
  probability, represent the observation likelihood.  Both 
  conditionally independent RANSAC sampling and boosting-like 
  conditionally dependent RANSAC sampling are explored.  We show that 
  the use of RANSAC-guided sampling reduces the necessary number of 
  particles to dozens for a full 3D tracking problem.  This is method 
  is particularly advantageous when state dynamics are poorly modeled. 
  We show empirically that the sampling efficiency (in terms of 
  likelihood) is much higher with the use of RANSAC.  The algorithm 
  has been applied to the problem of 3D face pose tracking with 
  changing expression. We demonstrate the validity of our approach 
  with several video sequences acquired in an unstructured 
  environment. 

* Abstract


