Ray Tracing
Recursive Ray Tracing

Gather light from various directions by tracing rays

Each pixel shows light at a surface

- trace ray from eye to surface

Each surface illuminated by lights and other surfaces

- trace rays from surface to other surfaces

And so on...
Types of Rays

Eye/pixel rays

Illumination/shadow rays

Reflection rays

Transmission/transparency rays
Eye Rays

Same as in ray casting

Effectively determine visible surfaces

For perspective view, trace from eye through pixel

For orthogonal view, trace parallel rays through pixels in direction of projection

Stop at nearest intersection with surface
Illumination Rays

From surface point towards light source

Intervening surfaces may block or attenuate direct illumination

Light reaching surface applied using local illumination model
Reflection Rays

Gather non-local illumination reflecting (specularly) towards eye (incident ray)

From current point towards reflection direction

Contribute illumination from closest surface intersection

Assume perfect (sharp) specular reflection

Attenuated by specular coefficient
Transmission Rays

Gather light transmitted through current surface

Incident ray refracted according to index of refraction and Snell’s law

May use a single index of refraction (rather than per wavelength)

Attenuated by transmission coefficient
Trace Algorithm

Trace(ray)

Foreach object in scene
Intersect(ray, object)
If no intersections
return BackgroundColor
For each light
Foreach object in scene
Intersect(ShadowRay, object)
Accumulate local illumination
Trace(ReflectionRay)
Trace(TransmissionRay)
Accumulate global illumination
Return illumination
No Recursion
1 Bounce (level of recursion)
2 bounces
What’s different here?
Index of refraction > 1
Index of refraction < 1

Notice total internal reflection

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen
Spheres and Checkerboard

Plate III.10 Spheres and checkerboard. An early image produced with recursive ray tracing (Section 16.12). (Courtesy of Turner Whitted, Bell Laboratories.)

Turned Whitted, 1980 (Foley/vanDam III.10)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen
Computing Reflection Ray

\[R = (-1 \cdot N)N + I + (-1 \cdot N)N = I - 2(1 \cdot N)N \]

\(I \) = incident ray
\(N \) = normal vector
\(R \) = reflected ray
Computing Transmission Ray

Given N, I, η_1, and η_2
M is unit vector perpendicular to N
N, I, M, and T all lie in same plane

Use Snell’s law plus trigonometry to compute T…
Computing Transmission Ray

\[
\begin{align*}
\text{M} & \quad \text{N} \\
\theta_1 & \quad - \text{I} \\
\eta_1 & \quad \eta_2 \\
\text{T} & \quad \text{N} \\
\theta_2 & \quad - \text{I} \\
\text{M} & = [\text{I} - (\text{I.N})\text{N}] / \sin \theta_1
\end{align*}
\]

\[
\begin{align*}
\text{(-I.N)N} & \quad (\text{I.N})\text{N} \\
\theta_1 & \quad \theta_2 \\
\text{T} & = (\sin \theta_2)\text{M} - (\cos \theta_2)\text{N}
\end{align*}
\]

\[
\begin{align*}
\eta_{12} & = \eta_1 / \eta_2 = \\
\sin \theta_2 / \sin \theta_1
\end{align*}
\]

\[
\begin{align*}
\text{T} & = (\sin \theta_2 / \sin \theta_1)[\text{I} - (\text{I.N})\text{N}] - (\cos \theta_2)\text{N} \\
& = \eta_{12} \text{I} - [\eta_{12}(\text{I.N}) - (\cos \theta_2)]\text{N} \\
& = \eta_{12} \text{I} - [\eta_{12}(\text{I.N}) - \sqrt{1 - \sin^2 \theta_2}]\text{N} \\
& = \eta_{12} \text{I} - [\eta_{12}(\text{I.N}) - \sqrt{1 - \eta_{12}^2 \sin^2 \theta_1}]\text{N}
\end{align*}
\]

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen
Accumulating Light Contributions at a Point

\[I = \sum \text{local illumination (attenuated illum. rays)} + \text{attenuated reflection ray} + \text{attenuated transmission ray} \]

Illumination rays attenuated by transmission coefficients of light occluders

Reflection ray attenuated by specular coefficient

Transmission ray attenuated by trans. coefficient

All rays *may* be attenuated by \(1/r^2\)
Sampling Issues

Currently using only a single sample for each

- Pixel
- Reflection
- Transmission
- Frame time
- Eye point

All of these can cause forms of aliasing
Sampling Theory

Aliasing: a high frequency signal masquerading as a lower frequency

Nyquist limit: maximum frequency signal that may be adequately sampled

(1/2 sampling frequency)

Aliasing may occur when we take regularly-spaced samples of frequencies above the Nyquist limit
Examples of Aliasing

Reverse-rotating wagon wheels in films
(temporal aliasing)

http://flowers.ofthenight.org/wagonWheel/wagonWheel.html

“Jaggies” on polygon edges or specular highlights (spatial aliasing)

Creeping effects (jaggies in motion)
Jaggies and Moire pattern
Aliasing Illustration

Fig. 14.16 Sampling at the Nyquist rate: (a) at peaks, (b) between peaks, (c) at zero crossings. (Courtesy of George Wolberg, Columbia University.)

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Columbia University.)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen
Anti-aliasing - Supersampling

Shoot multiple rays through each pixel

Aim through centers of a regular grid (e.g. 3x3 or 4x4 grid of samples)

Average resulting intensity values (box filter reconstruction)

Reduces spatial aliasing effects
Adaptive Supersampling

Sample at corners and center

Add samples if gradient is more than some threshold

Add samples only in necessary regions

Reduces aliasing effects more efficiently

Still may not sample adequately
Jittering

Apply random perturbations to sample positions of uniform or adaptive grid

Does not increase sampling rate, but removes regularity

Converts aliasing to noise, which is perceptually more tolerable
Fig. 16.62 Aliasing vs. noise. (a) A comb with regularly spaced triangles, each \((n + 1)/n\) pixels wide, sampled with one sample per pixel. \(c\) = samples that fall outside comb; \(s\) = samples that fall inside comb. (b) A comb with 200 triangles, each 1.01 pixels wide and 50 pixels high. 1 sample/pixel, regular grid. (c) 1 sample/pixel, jittered \(\pm 1/2\) pixel. (d) 16 samples/pixel, regular grid. (e) 16 samples/pixel, jittered \(\pm 1/2\) pixel. (Images (d)–(e) by Robert Cook, Lucasfilm Ltd.)

Figures by Robert Cook, from Foley, vanDam, et al.,

Distributed Ray Tracing

Apply distribution-based sampling to many parts of the ray-tracing algorithm

Fuzzy reflection/transmission
 • perturb directions reflection/transmission, with distribution based on angle from ideal ray

Motion blur
 • perturb eye ray samples in time

Depth of field
 • perturb eye position on lens

Fuzzy shadows/penumbra
 • sample illumination rays across area light
Importance Sampling

Divide sample space into blocks of equal area under weighting function

Assign each pixel sample a different (random) block

Perturb randomly within block (ideally, points in block have nearly equal weight...)

possible block arrangement for reflection ray direction
Motion Blur Illustration

Plate III.16 1984. Rendered using distributed ray tracing (Section 16.12.4) at 4096 x 3550 pixels with 16 samples per pixel. Note the motion-blurred reflections and shadows with penumbrae cast by extended light sources. (By Thomas Porter. © Pixar 1984. All Rights Reserved.)

Depth of Field Illustration

Penumbras and Blurry Reflection

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen