Image-Based Rendering

What is it?
- Still a difficult question to answer
- Uses images (photometric info) as key component of model representation

What’s Good about IBR

Model acquisition
- Detailed 3D geometry difficult to construct
- Images relatively easy to acquire

Model quality
- If you want photo-realistic output, start with photo-realistic input

Rendering complexity
- Dependent on resolution of images and screen, not 3D geometry

Defining the Problem

Plenoptic function
\[p = P(\theta, \phi, \lambda, V_x, V_y, V_z, t) \]

“Given a set of samples (complete or incomplete) from the plenoptic function, the goal of image-based rendering is to generate a continuous representation of that function”

Accomplishing IBR

Sampling
Reconstruction
Re-sampling

3D Images (Depth Images)

Image has x and y resolution
Each sample has depth as well as color
Acquiring 3D Images (Sampling)

- Range camera
- Overlapping images
- Camera rotation about tripod
- Conventional 3D rendering

Rendering 3D Images

Think of each sample as a 3D point
- Transform each point according to viewing parameters
- Kind of slow
- Actually, point-based rendering has become more popular/feasible in recent years...

3D image warping
- Don’t transform each point independently
- Take advantage of the x and y coherence of the image representation

3D Image Warping as Forward Mapping

- Depth image is the source
- Generated image is the destination
- Very regular source image is warped to destination image
 - No longer regular in destination image
 - Similar to problem in texture mapping
 - Ultimately need to get regularly sampled destination

Difficulties of Forward Mappings

- Mappings are “many to one”
- Some destination pixels may be multiply-covered
- Some destination pixels may not be covered at all

Dealing with Difficulties

- Multiple coverage
 - Z-buffering
 - back-to-front traversal
- Holes
 - alleviated by warping multiple images
 - hole-filling interpolation possible
 - Often splat the samples to the screen with some appropriate splat size
 - Sometimes use samples as triangle vertices and draw warped triangles

Some 3D Image Warping Based IBR Algorithms

- **View Interpolation**
 - Chen/Williams, *SIGGRAPH* 93
- **Post-Rendering Warping**
 - Mark et al., *I3DG* 97
- **QuickTime VR**
 - Chen, *SIGGRAPH* 95
- **Plenoptic Modeling**
 - McMillan/Bishop, *SIGGRAPH* 95
- **Layered Depth Images**
 - Shade et al., *SIGGRAPH* 98
View Interpolation

Sample a number of depth images
Build adjacency graph of images
 • nodes are images
 • edges are mappings between them
Interpolate pixels to construct in-between images (i.e. - 3D image warping)
 • Think of image morphing, but in 3D

View Interpolation Examples

Fig. 2: Excerpts of scene movement for 2D receptive window, as compared to the moving plane.
Fig. 3: Excerpt of scene movement for 3D receptive window.

Correspondence Mappings

Apply 4x4 transformation to source pixels to determine location in destination frame
Approximate transformation by per-pixel linear interpolation
For each graph edge, construct two mappings, one for each direction

Post-Rendering Warping

Render conventional 3D graphics images slowly, on-the-fly
Apply 3D image warping to generate in-between images quickly
Use view prediction to guess future view to start rendering conventionally

Post-Rendering Warping Example

Plate 1: A typical derived frame produced by our technique. The reference frames were generated at 3 frames/sec, and the average per-vertex position prediction error was 5.5 cm.
Plate 3: A particularly bad reference frame produced by our technique. Some areas of the image were occluded in both reference frames, resulting in prediction error.

from Mark, McMillan, and Bishop, “Post-Rendering 3D Warping”, Proceedings of 1997 Symposium on Interactive 3D Graphics

Video

John Hopkins Department of Computer Science
Course 480.490: Rendering Techniques, Professor: Jonathan Cohen
Quick-Time VR

Choose key eye positions to sample
Capture/create cylindrical panoramic image for each eye position
Allow users to “hop” among eye positions and rotate/zoom at each position
 • Fairly simple computation to map panorama to screen
Actually, doesn’t use depth images

Quick-Time VR Examples

![Quick-Time VR Examples](image)

from Chen, “Quick-Time VR: An Image-Based Approach to Virtual Environment Navigation,” *Proceedings of SIGGRAPH 95*, page 38

Plenoptic Modeling

Provides mathematical framework for analyzing IBR algorithms with respect to plenoptic function
Presents algorithm for visibility-preserving (back-to-front) traversal in 3D image warping
 • Based on following optical flow
Develop system for full 3D image warping of cylindrical panoramas

Plenoptic Modeling Examples

![Plenoptic Modeling Examples](image)

from McMillan and Bishop, “Plenoptic Modeling: An Image-Based Rendering System”, page 45

Layered Depth Images

Allow multiple samples per pixel in depth image
 • Each sample at different depth
 • All the front-most samples are first “layer”, etc.
Alleviates exposure artifacts
Often small average number of samples per pixel can remove most of the artifacts
Reduces the redundancy of multiple depth images

Videos