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ABSTRACT
The problem of scalable and robust distributed data storage has re-
cently attracted a lot of attention. A common approach in the area
of peer-to-peer systems has been to use a distributed hash table (or
DHT). DHTs are based on the concept of virtual space. Peers and
data items are mapped to points in that space, and local-control
rules are used to decide, based on these virtual locations, how to
interconnect the peers and how to map the data to the peers.

DHTs are known to be highly scalable and easy to update as
peers enter and leave the system. It is relatively easy to extend the
DHT concept so that a constant fraction of faulty peers can be han-
dled without any problems, but handling adversarial peers is very
challenging. The biggest threats appear to be join-leave attacks
(i.e., adaptive join-leave behavior by the adversarial peers) and at-
tacks on the data management level (i.e., adaptive insert and lookup
attacks by the adversarial peers) against which no provably robust
mechanisms are known so far. Join-leave attacks, for example, may
be used to isolate honest peers in the system, and attacks on the data
management level may be used to create a high load-imbalance, se-
riously degrading the correctness and scalability of the system.

We show, on a high level, that both of these threats can be han-
dled in a scalable manner, even if a constant fraction of the peers in

∗Supported by NSF-ANIR 0240551, NSF-CCF 0515080, and
NSF-CCR 0311795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007 ...$5.00.

the system is adversarial, demonstrating that open systems for scal-
able distributed data storage that are robust against even massive
adversarial behavior are feasible.

1. INTRODUCTION
In a distributed storage system, information is distributed among

multiple storage devices, simply called nodes in the following. To
provide a basic lookup service, the following operations have to be
implemented:

• Insert(d): this inserts data item d into the system.

• Lookup(name): this returns any data item d with Name(d)
= name, if it exists.

Once a distributed storage system becomes large enough, one also
has to deal with nodes leaving and joining the system, simply be-
cause storage devices may break down or new devices have to be
added in order to maintain a desired service quality. Hence, two
more operations are needed:

• Join(v): node v joins the system

• Leave(v): node v leaves the system

How can these four operations be implemented to obtain a robust
and scalable distributed storage system? The most prominent ap-
proach studied in the research community is to implement a dis-
tributed hash table, or DHT. DHTs have been realized in various
contexts including server-based systems such as Akamai and peer-
to-peer systems such as Chord [34], CAN [25], Pastry [9], and
Tapestry [36]. Most of the DHT-based systems are based on two
influential papers: a paper by Plaxton, Rajaraman, and Richa on
locality-preserving data management in distributed environments
[23] and a paper by Karger, Lehman, Leighton et al. on consistent
hashing and web caching [14]. The consistent hashing approach is
a very simple and elegant approach that is based on the following
rule:

Suppose that we have two random functions f and g. The func-
tion f maps the nodes randomly to real numbers in [0, 1), and the
function g maps the data items randomly to real numbers in [0, 1).
Every data item d is stored at the node v with a minimum distance
between f(v) and g(d) (viewing [0, 1) here as a ring). It turns out
that this rule has several nice features [14]:

• On expectation, every node has the same load,

• when integrating a node into or removing a node from a sys-
tem of n nodes, only a 1/n-fraction of the data has to be
replaced on expectation, and



• when storing O(log n) copies of each data item, the system
is robust against a constant fraction of faulty nodes.

However, all of these properties only hold if f and g are random
and the names selected for the nodes and the data items are inde-
pendent of f and g. Unfortunately, in a DHT, g must be a fixed hash
function because otherwise it would not be possible to compute the
location of the data items. Hence, it is easy for the adversary to gen-
erate many data items that all need to be stored at the same node,
even if it cannot invert g. It just has to try sufficiently many names.
In fact, millions of names can be quickly tested with hash functions
like SHA-1.

Fortunately, f does not have to be a fixed hash function for the
DHT to work. But even a truly random mapping does not protect
against adversarial attacks. Suppose, for example, that every new
node is mapped uniformly at random to a point in [0, 1). If the
adversary wants to overpopulate a certain area of the [0, 1) space,
say some interval I , it just needs to execute sufficiently many join
and leave operations in which it keeps all nodes that made it into I
in the system and removes all others for another join attempt.

DHT constructions are very vulnerable to a node and data im-
balance in the virtual space since this can seriously degrade their
scalability. Can we design simple protocols for the operations join,
leave, insert and lookup that are provably robust against these at-
tacks without restricting the openness of the system?

In this paper we show that, on a high level, this is possible. More
precisely, we will show that there are scalable join and leave proto-
cols so that for a polynomial number of join and leave requests the
nodes will be evenly distributed in the [0, 1) space, with high prob-
ability1, and the honest and adversarial nodes will be well-spread
so that quorums of size O(log n) can be formed to wash out any
adversarial behavior violating the protocols by simple majority de-
cision. Moreover, we will show that there are scalable and robust
insert and lookup protocols so that for a polynomial number of at-
tempts the adversary will not manage to find data names so that it
can create a high request or load imbalance in the system.

1.1 Our contributions
Next we give a detailed description of our contributions. For sim-

plicity, we assume that the number of honest nodes in the system
will only change by a constant factor over time. In this way, notions
like “in a polynomial number of rounds” and “with high probabil-
ity” are well-defined. However, using the techniques in [3], our
approach can also be extended to systems in which the number of
honest nodes in the system may change in an arbitrary way over
time, as long as it does not drop too rapidly.

In the following, let n be the maximum number of honest nodes
in the system at any time and let εn for some ε < 1 be the maximum
number of nodes that the adversary can have in the system at any
time. Thus, the adversary has bounded resources, but apart from
that the adversary can do what it likes, such as choosing any names
it likes for the data items and the nodes.

Join-leave attacks
First, we focus on making a DHT robust against join-leave attacks.
More precisely, we consider the following scenario. There are n
blue (or honest) nodes and εn red (or adversarial) nodes for some
fixed constant ε < 1. There is a rejoin operation that, when applied
to node v, lets v first leave the system and then join it again from
scratch. The leaving is done by simply removing v from the system
and the joining is done with the help of a join operation to be spec-
1By “with high probability” or “w.h.p.” we mean a probability of
at least 1− 1/n where n is the size of the system.

ified by the system. We assume that the sequence of rejoin requests
is controlled by an adversary, which is a typical assumption in the
analysis of online algorithms. The adversary can only issue rejoin
requests for the red nodes, but it can do this in an arbitrary adaptive
manner. That is, at any time it can inspect the entire system and
select whatever red node it likes to rejoin the system. Our goal is
to find an oblivious join strategy, i.e., a strategy that cannot distin-
guish between the blue and red nodes, so that for any adversarial
strategy above the following two conditions can be preserved for
every interval I ⊆ [0, 1) of size at least (c log n)/n for a constant
c > 0 and any polynomial number of rounds in n:

• Balancing condition: I contains Θ(|I| · n) nodes.

• Majority condition: the blue nodes in I are in the majority.

It is not difficult to see that the brute-force strategy of giving every
node a new random place whenever a node rejoins will achieve the
stated goal, with high probability, but this would be a very expen-
sive strategy. The challenge is to find a join operation that needs as
little randomness and as few rearrangements as possible to satisfy
the two conditions. Fortunately, there is such a strategy, called the
cuckoo rule. We first introduce some notation, and then we describe
the strategy.

In the following, a region is an interval of size 1/2r in [0, 1) for
some positive integer r that starts at an integer multiple of 1/2r .
Hence, there are exactly 2r regions of size 1/2r . A k-region is
a region of size (closest from above to) k/n, and for any point
x ∈ [0, 1), the k-region Rk(x) is the unique k-region containing
x.

Cuckoo rule: If a new node v wants to join the system, pick a
random x ∈ [0, 1). Place v into x and move all nodes in Rk(x)
to points in [0, 1) chosen uniformly and independently at random
(without replacing any further nodes).

Our first main result is summarized in the following theorem.

THEOREM 1.1. For any constants ε and k with ε < 1−1/k, the
cuckoo rule with parameter k satisfies the balancing and majority
conditions for a polynomial number of rounds, with high probabil-
ity, for any adversarial strategy within our model. The inequality
ε < 1 − 1/k is sharp as counterexamples can be constructed oth-
erwise.

Hence, a constant k > 1 would be sufficient to prevent adaptive
join-leave attacks of a constant fraction of adversarial peers. Thus,
it is remarkably easy to defend an open distributed storage system
against even massive join-leave attacks. The cuckoo rule allows
us to use local quorum strategies in order to wash out adversarial
behavior violating the protocols.

Lookup and insert attacks
Our basic strategy to handle attacks on the data layer is to use 2c−
1 = Θ(log n) one-way hash functions mapping each data item to
2c−1 points in the [0, 1) space. These hash functions are fixed but
have certain expansion properties to make it hard for the adversary
to create bad sets of insert or lookup requests. In order to achieve
an even load balance of the requests and the data items, we use the
majority trick of Upfal and Wigderson [35]: for each insert request,
store copies of the data item in at least c of the 2c − 1 locations,
and for each lookup request, access at least c locations of the data
item. This indeed suffices for the correct implementation of these
requests because if the copies are stored in a reliable way, then the



lookup operation will always retrieve at least one copy of the data
item.

Given this basic scheme, we present a scalable dynamic overlay
network and robust protocols for the insert and lookup operations.
In the following, U may represent the space of all names or the
names that the adversary can sample in a polynomial number of
time steps.

THEOREM 1.2. For any collection of lookup requests for data
items out of a set U of polynomial size with one request per node,
the lookup protocol can serve all of these requests correctly and
reliably in polylogarithmic time so that each node is passed by at
most O(log5 n) requests.

Notice that the upper bound is guaranteed for any adaptively
chosen set of lookup requests, including data items with multiple
lookup requests. The hash functions just need to be selected so
that they satisfy certain expansion properties. Also, notice that the
adversary cannot modify or delete a request in transit since we use
quorum strategies. Certainly, the bound is still too high for practical
purposes, but the best bound previously known for adaptively cho-
sen lookup requests in overlay networks is the trivial linear bound.
In light of this, our result is an exponential improvement, and an
interesting problem for future research will certainly be whether
further improvements are possible. For insert requests we obtain a
similar result.

THEOREM 1.3. For any collection of insert requests for data
items out of a set U of polynomial size with one request per node,
the insert protocol can serve all of these requests in polylogarithmic
time so that each node is passed by at most O(log5 n) requests.
Moreover, the maximum amount of copies to be stored by any node
to serve all of the requests is bounded by O(log2 n).

The O(log2 n) bound is asymptotically optimal if n insert re-
quests are executed since we need to store Θ(n log n) copies in
Θ(n/ log n) quorum regions containing Θ(log n) nodes each.

Prerequisites
An important prerequisite for our join and leave operations to work
correctly is a distributed random number generator that can gener-
ate an unbiased random number even under the influence of a con-
stant fraction of adversarial nodes, and an important prerequisite
for our insert and lookup operations to work correctly is that one-
way hash functions with certain expansion properties are available
so that the adversary has no other way then sampling names in order
to design malicious collections of names. It is commonly believed
that one-way hash functions exist though no formal proof has been
found yet. But we will at least prove that random hash functions
will have expansion properties, w.h.p., that are good enough for our
results to hold. A distributed random number generator sufficient
for our purposes can be built on top of existing verifiable-secret-
sharing (VSS) protocols. In fact, we have developed a distributed
random number generator based on the bn−1
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c-VSS protocol in

[12] that we include in this paper for completeness. This genera-
tor may be used by the Θ(log n) nodes in any quorum in our DHT
to correctly and efficiently generate random numbers under the as-
sumption that the honest nodes are in a sufficient majority in that
quorum.

1.2 Previous work
In the area of peer-to-peer systems, work on robustness in the

context of overlay network maintenance has mostly focused on how
to handle a large fraction of faulty nodes (e.g., [2, 27, 34]) or churn,

that is, peers frequently enter and leave the system (e.g., [15, 26]).
However, none of these approaches can protect a DHT against the
join-leave attacks considered in this paper because just assigning a
random or pseudo-random point to each new node (by using some
random number generator or cryptographic hash function) does not
suffice to preserve the balancing and majority conditions [3]. Peo-
ple in the peer-to-peer community are aware of the danger of these
attacks [6, 8] and various solutions have been proposed that may
help thwart these attacks in practice [4, 5, 30, 21, 29, 31] but un-
til recently no mechanism was known that can provably cope with
these attacks without sacrificing the openness of the system.

One such mechanism, that can only cope with a linear number
of adversarial join requests, was proposed in [11]. The first mech-
anism that was shown to preserve randomness in the system under
adaptive adversarial behavior for a polynomial number of adversar-
ial join-leave requests uses random node IDs and enforces a limited
lifetime on every node in the system, i.e., every node has to reinject
itself after a certain amount of time steps [3]. However, this leaves
the system in a hyperactive mode that may unnecessarily consume
resources that could be better used for other purposes. Ideally, one
would like to use competitive strategies. That is, the resources con-
sumed by the mixing mechanism should scale with the join-leave
activity of the system. Recently, it was shown that for a pebble-
shuffling game this can be achieved [28]. In this game, there are
n blue pebbles and εn red pebbles for some fixed constant ε < 1.
The pebbles are laid out on a ring and the red pebbles can join
and leave the ring in an adaptive adversarial fashion. It was shown
in [28] that a simple protocol called k-rotation exists that can pre-
serve the majority condition with high probability. That is, for any
sequence of Θ(log n) pebbles along the ring, a majority of them is
blue. However, the result in [28] cannot be taken over to a virtual
space setting as adversarial strategies exist for which the k-rotation
rule cannot satisfy the balancing condition. Therefore, we had to
design a new strategy, which we called the cuckoo rule.

Also attacks on the data management layer have been considered
in the past. Most of the work considers the flash crowd scenario in
which many peers want to access the same information at the same
time. When using a pure DHT design, this can lead to severe bot-
tlenecks. To remove these bottlenecks, various caching strategies
have been proposed. Among them are CoopNet [22], Backslash
[32], PROOFS [33] in the systems community and [20] in the the-
ory community. However, being able to handle flash crowds is not
sufficient to survive the attacks considered in this paper because
much worse than having many requests to the same data item is to
have many requests to different data items residing at the same peer.
Standard combining or caching strategies do not work here, so new
strategies are needed. It turns out that, interestingly, work on deter-
ministic simulations of CRCW PRAMs comes to the rescue here.
This was pioneered by Mehlhorn and Vishkin [18] and further de-
veloped in a series of papers [1, 13, 16, 35]. The basic ideas behind
our insert and lookup protocols are based on these results though
adaptations of the proof techniques were necessary here because
our strategies are based on a dynamic well-structured overlay net-
work whereas the PRAM results above have only considered static
complete networks or networks with expander-like properties.

1.3 Organization of the paper
In Section 2 we will prove Theorem 1.1 and in Section 3 we will

prove Theorems 1.2 and 1.3. The paper ends with a conclusion.

2. ANALYSIS OF THE CUCKOO RULE
Recall that a region is an interval of size 1/2r in [0, 1) for some

positive integer r that starts at an integer multiple of 1/2r . Let R̂



be any fixed region of size (c log n) · k/n, for some constant c,
for which we want to check the balancing and majority conditions
over polynomial in n many steps. Thus, R̂ contains exactly c log n
many k-regions. The age of a k-region is the difference between the
current round and the last round when a new node was placed into
it (and all old nodes got evicted), and the age of R̂ is defined as the
sum of the ages of its k-regions. A node in R̂ is called new if it was
placed in R̂ when it joined the system, and otherwise it is called old.
Before we start with our analysis, we state some technical lemmas.
The bounds in the first are also known as Chernoff bounds.

LEMMA 2.1 ([17]). Suppose that X1, . . . , Xn are indepen-
dent binary random variables. Let X =

Pn
i=1 Xi and µ = E[X].

Then it holds for all ε ≥ 0 that Pr[X ≥ (1+ε)µ] ≤ e−ε2µ/(2(1+ε))

and for all 0 ≤ ε ≤ 1 that Pr[X ≤ (1− ε)µ] ≤ e−ε2µ/2.

LEMMA 2.2. Suppose that X1, . . . , Xn are independent ran-
dom variables with Pr[Xi = t] = p(1− p)t−1 for every t ∈ IN for
some fixed 0 < p < 1. Let X =

Pn
i=1 Xi and µ = E[X]. Then it

holds for every ε > 0 that Pr[X ≥ (1 + ε)µ] ≤ e−ε2n/2(1+ε) and
for all 0 ≤ ε ≤ 1 that Pr[X ≤ (1− ε)µ] ≤ e−ε2n/2.

PROOF. Consider transforming every Xi = t into a binary string
Bt = (000...01) with (t − 1) zeroes. Then the event X1 = t1,
X2 = t2, X3 = t3, ... can be represented by a string B of the
form Bt1 ◦ Bt2 ◦ Bt3 ... = 00...1 00...1 00...1.... Notice that B
contains n many 1’s and the total number of positions (0 or 1) in B
is T =

P
i ti.

Now, consider instead an infinite set of binary random variables
Y1, Y2, Y3, . . . with Pr[Yi = 1] = p. Viewing Yi as representing
the ith position in B, it is not difficult to check that

Pr

"
nX

i=1

Xi ≥ T

#
= Pr

"
TX

j=1

Yj ≤ n

#

and

Pr

"
nX

i=1

Xi ≤ T

#
= Pr

"
TX

j=1

Yj ≥ n

#

Setting T = (1±ε)µ and applying the Chernoff bounds to
PT

j=1 Yj

gives the lemma.

THEOREM 2.3 ([10]). Let X1, . . . , Xn be an arbitrary set of
random variables and let f be a function satisfying the property
that for each i ∈ {1, . . . , n} there is a non-negative ci such that
|E[f | X1, . . . , Xi]− E[f | X1, . . . , Xi−1]| ≤ ci. Then

Pr[f ≥ E[f ] + t] ≤ e−t2/(2
Pn

i=1 c2i )

and

Pr[f ≤ E[f ]− t] ≤ e−t2/(2
Pn

i=1 c2i ) .

Note that the Xi’s in this theorem are not required to be indepen-
dent. Now we can start with the proof of Theorem 1.1. We assume
that before the adversary starts with its rejoin operations, only the
n blue nodes were in the system, and sufficiently many rejoin oper-
ations have been executed on the blue nodes so that every k-region
has been entered by a new node at least once. Afterwards, the ad-
versary enters with its εn red nodes one by one, using the cuckoo
rule in each round, and then it starts executing rejoin operations on
the red nodes as it likes. The assumption of acting on a sufficiently
old system significantly simplifies the proofs.

The next lemma follows directly from the cuckoo rule because
every k-region can have at most one new node at any time.

LEMMA 2.4. At any time, R̂ contains at most c log n new nodes.

In order to bound the number of old nodes in R̂, we first have to
bound the age of R̂ (Lemma 2.5). Then we bound the maximum
number of nodes in a k-region (Lemma 2.6) and use this to bound
the number of evicted blue and red nodes in a certain time interval
(Lemma 2.9). After that, we can combine all lemmas to bound the
number of old blue and red nodes in R̂ (Lemma 2.10).

LEMMA 2.5. At any time, R̂ has an age within (1± δ)(c log n)
n/k, with high probability, where δ > 0 is a constant that can be
made arbitrarily small depending on the constant c.

PROOF. Let R1, . . . , RC be the k-regions of R̂, where C =
c log n. For every k-region Ri, let the random variable Xi de-
note the age of Ri at the beginning of the given round, and let
X =

PC
i=1 Xi. For all i and t ≥ 1 it holds that Pr[Xi = t] =

(k/n)(1− (k/n))t−1. Hence, Xi is geometrically distributed with
probability p = k/n. Thus, E[Xi] = 1/p = n/k, and therefore,
E[X] =

PC
i=1 E[Xi] = (n/k) · C. It remains to show that X is

concentrated around E[X].
Unfortunately, the ages of the k-regions are not independent as

two k-regions cannot have the same age. However, there is an easy
solution to this problem. Let Y1, . . . , YC be independent random
variables with the same probability distributions as X1, . . . , XC

and let Y =
PC

i=1 Yi. Then it holds for all ages 0 < t1 < t2 . . . <
tC that

Pr[X1 = t1 ∧ . . . ∧ XC = tC ]

=

CY
i=1

Pr[Xi = ti | X1 = t1 ∧ . . . ∧ Xi−1 = ti−1]

=

CY
i=1

„
1− k

n

«−(i−1)

Pr[Yi = ti]

=

„
1− k

n

«−(C
2)

Pr[Y1 = t1 ∧ . . . ∧ YC = tC ]

Hence, because all Xi’s have the same probability distribution, it
holds for any T ≥ 1 that

Pr[X ≥ T ]

=
X

{t1,...,tC}⊆IN,
P

i ti≥T

Pr[X1 = t1 ∧ . . . ∧ XC = tC ]

=
X

{t1,...,tC}⊆IN,
P

i ti≥T

Pr[Y1 = t1 ∧ . . . ∧ YC = tC ]

„
1− k

n

«−(C
2)

≤
„

1− k

n

«−(C
2)

Pr[Y ≥ T ] ≤ eC2k/n Pr[Y ≥ T ] .

Combining this with Lemma 2.2, it follows that Pr[X ≥ (1+δ)C ·
n/k] is polynomially small for any constant δ > 0 depending on
the constant in C.

For a lower bound on the age of R̂, we use the mapping f :
INC → INC with

f(t1, t2, . . . , tC) = (t1 + d1, t2 + d2, . . . , tC + dC)

where

dj = |{k ∈ {1, . . . , C} | tk < tj ∨ (tk = tj ∧ k < j)}|
for all j ∈ {1, . . . , C}. It is easy to check that this mapping
is injective. Furthermore, for all (t1, . . . , tC) ∈ IN it holds for



(t′1, . . . , t
′
C) = f(t1, . . . , tC) that t′1, . . . , t

′
C are pairwise disjoint

and

Pr[Y1 = t1 ∧ . . .∧ YC = tC ] = Pr[X1 = t′1 ∧ . . .∧ XC = t′C ]

Hence, for any T ≥ 0,

Pr[Y ≥ T ]

=
X

(t1,...,tC)∈INC ,
P

i ti≥T

Pr[(Y1, . . . , YC) = (t1, . . . , tC)]

=
X

(t1,...,tC)∈INC ,
P

i ti≥T

Pr[(X1, . . . , XC) = f(t1, . . . , tC)]

≤
X

{t′1,...,t′
C
}⊆IN,

P
i t′i≥T

Pr[(X1, . . . , XC) = (t′1, . . . , t
′
C)]

= Pr[X ≥ T ]

and therefore Pr[X ≤ T ] ≤ Pr[Y ≤ T ]. Combining this with
Lemma 2.2, it follows that Pr[X ≤ (1−δ)C ·n/k] is polynomially
small for any constant δ > 0 depending on the constant in C.

LEMMA 2.6. For any k-region R in R̂ it holds at any time that
R has at most O(k log n) nodes, with high probability.

PROOF. We need two claims to prove the lemma. Let T =
γ(n/k) ln n, where γ is a sufficiently large constant.

CLAIM 2.7. For any (red or blue) node v, v gets replaced at
most (1 + δ)γ ln n times within T rounds, w.h.p., where δ > 0 can
be made arbitrarily small depending on γ.

PROOF. For any t ∈ {1, . . . , T} let the binary random variable
Xt be 1 if and only if v gets replaced in the tth round. Let X =PT

t=1 Xt. Because a k-region is chosen uniformly at random for
eviction, Pr[Xt = 1] = k/n for every t. Hence, E[X] = (k/n) ·
T = γ ln n. Since the Xt’s are independent, the bound on X
follows from the Chernoff bounds.

CLAIM 2.8. For any k-region R in R̂ it holds at any time that
R has an age of at most T , w.h.p.

PROOF. The probability that R is evicted in some round is k/n,
and this probability is independent of other rounds. Hence, the
probability that R has an age of at least T is equal to (1 − k

n
)T ≤

e(k/n)·T = n−γ .

The two claims imply that there are at most (1+ε)n·(1+δ)γ ln n
node replacements during the lifetime of a k-region, w.h.p. Hence,
the expected number of nodes in a k-region can be at most

k

n
· ((1 + ε)n · (1 + δ)γ ln n + 1) = (1+ ε)(1+ δ)k ·γ ln n+1 .

Since the locations of the node replacements are independent of
each other, it follows from Lemma 2.1 that the number of nodes in
a k-region is at most O(k log n) at any time, w.h.p.

Next we bound the number of blue and red nodes that are evicted
in a certain time interval.

LEMMA 2.9. For any time interval I of size T = (γ/ε) log3 n,
the number of blue nodes that are evicted in I is within (1±δ)T ·k,
with high probability, and the number of red nodes that are evicted
in I is within (1± δ)T · εk, with high probability, where δ > 0 can
be made arbitrarily small depending on γ.

PROOF. We start with the proof for the blue nodes. Consider any
time interval I consisting of T rounds. For every t ∈ {1, . . . , T}
let the random variable Xt denote the number of blue nodes evicted
in the tth round of I , and let X =

PT
t=1 Xt. Since there are

n blue nodes in the system, it follows that E[Xt] = k for ev-
ery t, no matter how the blue nodes are distributed, and therefore
E[X] = T · k. From Lemma 2.6 we know that every Xt is at
most 4 log n, w.h.p. Also, for any given X1, . . . , Xt−1, E[Xt |
X1, . . . , Xt−1] = E[Xt] = k. Hence, it holds for the function
f(X1, . . . , Xn) =

Pn
i=1 Xi that

|E[f | X1, . . . , Xi]− E[f | X1, . . . , Xi−1]|

=

˛̨
˛̨
˛

 
E

"
nX

j=i+1

(Xj | X1, . . . , Xi)

#
+

iX
j=1

Xj

!
−

 
E

"
nX

j=i

(Xj | X1, . . . , Xi−1)

#
+

i−1X
j=1

Xj

!˛̨
˛̨
˛

= |Xi − E[Xi]| ≤ 4 log n

Thus, the method of bounded martingale differences (Lemma 2.3)
implies that, for any constant δ ≥ 0,

Pr[X ≥ (1 + δ)T · k] ≤ e−δ2(T ·k)2/(2
PT

i=1(4 log n)2)

which is polynomially small in n if the constant in T is sufficiently
large. The same holds for Pr[X ≤ (1 − δ)T · k], which proves
the lemma for the blue nodes. The proof for the red nodes is the
same.

Combining Lemmas 2.5 to 2.9, we obtain the following lemma.

LEMMA 2.10. At any time, R̂ has within (1 ± δ)(c log n) · k
old blue nodes and within (1± δ)(c log n) · εk old red nodes, with
high probability, if none of these has rejoined.

PROOF. Consider any age distribution t1, . . . , tC for the k-regions
R1, . . . , RC of R̂, where C = c log n. Let T = (γ/ε) log3 n be
selected as in Lemma 2.9. Then it follows from Lemma 2.9 and the
Chernoff bounds that R̂ hat at least

(1 + δ)T · k
n/k

CX
i=1

bti/T c ≥ (1 + δ)k2

n

 
CX

i=1

ti − C · T
!

blue nodes and at most

(1− δ)T · k
n/k

CX
i=1

dti/T e ≤ (1− δ)k2

n

 
CX

i=1

ti + C · T
!

blue nodes, w.h.p. Since
PC

i=1 ti is within (1±δ′)Cn/k according
to Lemma 2.5, Lemma 2.10 follows for the blue nodes.

The same calculations (with an additional ε factor) apply to the
red nodes.

Combining Lemmas 2.4 and 2.10, we can now prove when the
balancing and majority conditions are satisfied.

• Balancing condition: From Lemmas 2.4 and 2.10 it follows
that every region R of size (c log n)k/n has at least (1 −
δ)(c log n) · k and at most (1 + δ)(c log n + (c log n)k +
(c log n)εk) = (1 + δ)(c log n)(1 + (1 + ε)k) nodes, where
the constant δ > 0 can be made arbitrarily small. Hence, the
regions are balanced within a factor of close to (1+ε+1/k).

• Majority condition: From Lemmas 2.4 and 2.10 it also fol-
lows that every region of size (c log n)k/n has at least (1−



δ)(c log n) · k blue nodes and at most (1 + δ)(c log n +
(c log n)·εk) red nodes, w.h.p., where the constant δ > 0 can
be made arbitrarily small. These bounds are also tight in the
worst case, which happens if the adversary focuses on a spe-
cific region R of size (c log n)k/n and continuously rejoins
with any red node outside of R. Hence, the adversary is not
able to obtain the majority in any region of size (c log n)k/n
as long as (c log n)(εk + 1) < (c log n) · k which is true if
and only if ε < 1− 1/k.

Hence, for ε < 1 − 1/k the balancing and majority conditions are
satisfied, w.h.p., and this is sharp, which proves Theorem 1.1.

3. ROBUST INSERT AND LOOKUP PRO-
TOCOLS

In this section we present our robust insert and lookup proto-
cols. These protocols are based on a dynamic de Bruijn graph and
2c − 1 one-way hash functions with certain expansion properties.
Also other dynamic graphs may be used, but the dynamic de Bruijn
graph turns out to be the most useful for our purposes. We first de-
scribe the dynamic de Bruijn graph and how to store data and route
messages in it, and then we specify what kind of expansion proper-
ties the hash functions need to satisfy. Afterwards, we present and
analyze the insert and lookup protocols.

For simplicity, we assume that the number of honest nodes in the
system only deviates by a constant factor over time and that n is
the maximum number of nodes in the system at any time. (We just
need this so that we can focus on a fixed region size. Local-control
update mechanisms for the region size such as the ones in [3, 11]
may be used if n significantly changes over time.

3.1 The dynamic de Bruijn graph
In the classical d-dimensional de Bruijn graph, {0, 1}d repre-

sents the set of nodes and two nodes x, y ∈ {0, 1}d are con-
nected by an edge if and only if there is a b ∈ {0, 1} so that
x = (x1 . . . xd) and y = (bx1 . . . xd−1) (i.e., y is the result of
a right shift of the bits in x with the highest bit position taken by b)
or y = (x2 . . . xdb). When viewing every node x ∈ {0, 1}d as a
point

Pd
i=1 xi/2i ∈ [0, 1) and letting d → ∞, then the node set

of the de Bruijn graph is equal to [0, 1) and two points x, y ∈ [0, 1)
are connected by an edge if and only if x = y/2, x = (1 + y)/2,
x = 2y mod 1, or x = (2y− 1) mod 1. This motivates the follow-
ing dynamic variant of the de Bruijn graph (e.g., [20]):

Recall the definition of a region. We identify the peers by their
points in [0, 1). Given a peer v ∈ [0, 1), we define its quorum re-
gion Rv as the unique region of size closest to (γ log n)/n from
above that contains v, where γ > 1 is a sufficiently large but fixed
constant. For any set of peers V ⊂ [0, 1), we require that every peer
v ∈ V maintains connections to all peers whose quorum regions
contain a point in {v, v/2, (1 + v)/2, 2v mod 1, (2v− 1) mod 1}.
Let us call the resulting graph DB(V ). The following lemma eas-
ily follows from the fact that the d-dimensional de Bruijn graph has
a constant degree and a diameter of O(d).

LEMMA 3.1. For any node set V ⊂ [0, 1) that satisfies the bal-
ancing condition, every quorum region forms a clique of Θ(log n)
nodes, which implies that DB(V ) has a diameter of O(log n) and
a degree of O(log n).

Besides having nice topological properties, the dynamic de Bruijn
graph is easy to update. Whenever a peer v enters of leaves the sys-
tem, only the quorum regions containing a point in {v, v/2, (1 +
v)/2, 2v mod 1, (2v − 1) mod 1} are affected, which only sum up
to O(log n) nodes when using the cuckoo rule, w.h.p.

3.2 Reliable storage and routing
If also the majority condition holds, then the honest nodes are in

the majority in each quorum region. This allows the honest nodes
to wash out adversarial behavior violating the protocols by simple
majority decision. In order to reliably store data, we therefore de-
mand that copy i of data item x be stored in all nodes of the unique
quorum region containing hi(x).

In order to route a message from a node v ∈ [0, 1) to a point
w ∈ [0, 1) (representing a node or location of a copy) in a reliable
way, we execute the following Route(v, w) protocol:

Focus only on the first log n bits of the binary representation of
v, denoted by (v1v2 . . . vlog n), and forward the message from Rv

along the quorum regions containing the points (v2v3 . . . vlog nw1),
(v3v4 . . . vlog n w1w2), and so on, until the quorum region contain-
ing the point (w1w2 . . . wlog n) is reached, which also contains w.
It is easy to check that this routing strategy can be performed along
adjacent regions in DB(V ) and that the following lemma holds.

LEMMA 3.2. If the balancing and majority conditions are sat-
isfied, then Route(v, w) combined with majority decision reliably
routes a message in at most log n communication rounds from the
quorum region containing v to the quorum region containing w.

The only problem is the congestion caused by routing multiple
messages. As a prerequisite for this we need suitable hash func-
tions.

3.3 Robust hash functions
Next we specify two properties the 2c−1 hash functions h1, . . . ,

h2c−1 have to satisfy for our protocols to work. The first property,
given in Lemma 3.3, will be crucial to show that many requests can
avoid congested nodes during the routing, and the second property,
given in Lemma 3.4, will be crucial to show that many requests can
avoid destination nodes with a high contention, no matter which
collection of data items is selected for the requests.

In order to investigate the congestion caused by the routing in
the dynamic de Bruijn graph, we introduce the shuffle graph. For
any d ≥ 1, the d-dimensional shuffle graph SH(d) consists of
d + 1 levels numbered from 0 to d. The node set of level i is given
as Vi = {0, 1}d, and for every 0 ≤ i < d, every pair of nodes
v ∈ Vi and w ∈ Vi+1 is connected if and only if their binary
representations satisfy v = (v1v2 . . . vd) and w = (v2v3 . . . vdb)
for some bit b ∈ {0, 1}.

The shuffle graph is related to the well-known Omega network.
It is a leveled form of the de Bruijn graph and contains for every
source s ∈ V0 and destination t ∈ Vd a unique path of length
d from s down to t. In fact, these paths represent the paths the
packets will move along through DB(V ) when using the reliable
routing strategy above. So instead of focusing on routing prob-
lems between nodes in DB(V ) we will focus on routing problems
from source nodes in V0 to destination nodes in Vd in SH(d). This
makes it easier to investigate congestion issues in DB(V ). Notice
that for every 1 ≤ ` ≤ d, SH(d) contains 2d−` disjoint graphs
SH(`) from level 0 to `. Let SH(`) denote their set.

Now, let U be the universe of data items, C = U ×{1, . . . , 2c−
1} be the set of copies, V =

Sd
i=1 Vi be the set of nodes in SH(d)

and H = {h1, . . . , h2c−1} be the set of hash functions used to
assign the 2c − 1 copies of each data item to points in [0, 1). The
mapping of copies to points in Section 3.2 implies that, given H,
the destination node of the ith copy of data item u ∈ U in SH(d)
is the node v ∈ Vd representing the highest d bits in the binary
representation of hi(u). To simplify our presentation, when we talk
in the following about the node hi(u), we mean the corresponding
node v ∈ Vd.



In order to witness a bad congestion, we will make use of so-
called k-bundles F ⊆ C × V , where every edge (c, v) ∈ F repre-
sents an event that a request for copy c passes through a congested
node v ∈ V . Let U(F ) = {u ∈ U | ∃v ∈ V : ((u, i), v) ∈ F for
some i} and V (F ) = {v ∈ V | ∃c ∈ C : (c, v) ∈ F}. Given a
set H, we call F a k-bundle if

1. |F | = k|U(F )| and

2. there is an injective mapping f : U(F ) → V0 of data items
to source nodes so that for every edge e = ((u, i), v) ∈ F
the path from f(u) ∈ V0 to hi(u) ∈ Vd in SH(d) passes
through v.

F is also called a k-bundle of U(F ), and we define ΓF (U(F )) =
V (F ). A k-bundle is called σ-sparse if for any subset V ′

` ⊆ V`

representing all nodes in level ` of some graph SH(`) in SH(`) it
holds that |V (F ) ∩ V ′

` | ≤ σ|V ′
` |. H is called a (σ, k)-expander if

for any S ⊆ U with |S| ≤ n and any σ-sparse k-bundle F of S,
|ΓF (S)| ≥ |S|. In the following, let |U | = m.

LEMMA 3.3. If c ≥ 6 log m and m ≥ n3, σ ≤ 1/(8e log n)
and the functions h1, . . . , h2c−1 are chosen uniformly and inde-
pendently at random, thenH is a (σ, c/2)-expander with high prob-
ability.

PROOF. Let d = log n. Suppose that, for randomly chosen func-
tions h1, . . . , h2c−1, H is not a (σ, c/2)-expander. Then there ex-
ists a set S ⊂ U with |S| ≤ n and a σ-sparse c/2-bundle F of S
with |ΓF (S)| < |S|. We claim that the probability ps that such a
set S of size s exists is at most 
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a σ-sparse W ⊆ V witnessing a bad expansion of F . Since W
is σ-sparse, the probability that any particular edge selected for F
indeed points to a node in W is at most σ, and since the hash func-
tions are chosen uniformly and independently at random, we obtain
a total probability of at most σcs/2.

Next we simplify ps. Using the conditions on c and σ in the
lemma it holds that 
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Hence, summing up over all possible values of s, we obtain a prob-
ability of having a bad σ-sparse c/2-bundle of at most 2/m, which
proves the lemma.

Although it seems that we only proved an expansion property
for a static graph, notice that as long as n is the maximum number
of nodes in the system at any time, we just need to consider all

SH(d) with d ≤ log n to capture all possible routing strategies
for the nodes in DB(V ) at any time. Since the probability bound
in Lemma 3.3 is polynomially small, the hash functions can also
satisfy all of these SH(d) together with high probability.

Next we prove another expansion result that is needed for an
even load balancing of the data. We call H a (λ, k, σ)-expander if
for any S ⊆ U with |S| ≤ σn/c and any k-bundle F of S with
V (F ) ⊆ Vd it holds that |ΓF (S)| ≥ λk|S|. We just focus on the
nodes in Vd here since we are only interested in the contention at
the destinations of the requests for the data items in U(F ).

LEMMA 3.4. Let 0 < λ < 1 be any constant. Then it holds that
for any c ≥ 6 log m and σ ≤ 1/(λ(4e)(1+λ)/(1−λ)) that if the
functions h1, . . . , h2c−1 are chosen uniformly and independently
at random, then H is a (λ, c/2, σ)-expander with high probability.

PROOF. The proof is similar to the proof of Theorem 1 in [13].
Suppose that, for randomly chosen functions h1, . . . , h2c−1, H is
not a (λ, c/2, σ)-expander. Then there exists a set S ⊂ U with
|S| ≤ σn/c and a c/2-bundle F of S with V (F ) ⊆ Vd and
|ΓF (S)| < λ(c/2)|S|. We claim that the probability ps that such
a set S of size s exists is at most
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Next we simplify ps. Using the conditions on c and σ in the
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Hence, summing up over all possible values of s, we obtain a prob-
ability of having a bad c/2-bundle of at most 2/m, which proves
the lemma.

We are now ready to describe and analyze our lookup and update
protocols. For both protocols we assume that H is appropriately
chosen, i.e., it satisfies the expansion properties in Lemmas 3.3 and
3.4.

3.4 The lookup protocol
Suppose, first, that we have n lookup requests, one per peer, and

when routing 2c − 1 packets for each of these requests through
the dynamic de Bruijn network, one for each hash function, every



quorum region will be passed by at most O(c log n) packets for dif-
ferent copies in each level (i.e., multiple packets for the same copy
are counted as one). This is the best we can expect, i.e., the bound
holds if the paths of the packets are evenly distributed. Then a com-
bination of the growing rank protocol [19] with Ranade’s trick of
combining packets for the same copy [24] can be used to route all
packets to their destinations in O(c log2 n) communication rounds,
w.h.p., where in each communication round every quorum region
can forward at most one packet according to the reliable routing
strategy. (The reason why we have a probabilistic result here is
that the growing rank protocol is a randomized scheduling proto-
col. Also a deterministic scheduling protocol could be used, so that
we have a completely deterministic lookup protocol, but that would
increase the runtime by another log n factor in the worst case.)

Unfortunately, the adversary can generate lookup requests so that
some quorum regions get congested. To handle this problem, we
allow several attempts for each lookup request and use a simple
threshold mechanism to control the congestion in each attempt.
More precisely, we repeat the following procedure for sufficiently
many rounds:

For each of the remaining lookup requests, 2c − 1 packets are
sent out, one for each of its 2c − 1 destinations. The packets are
routed as above with the difference that each quorum region keeps
track, for each level ` ∈ {1, . . . , d}, of the set of copies (u, i) ∈
U × {1, . . . , 2c − 1} for which packets have already passed it in
level `. If the size of a copy set exceeds a threshold of γc log2 n
for some level `, then all further packets for copies not in that set
that reach that region in level ` are discarded. Packets for the same
copy that meet in a region are combined. For all packets that have
reached their destinations, answers are sent back by reversing the
routing of the lookup packets, splitting the answers whenever their
lookup packets were combined. A lookup request is successful in
that round if at least c answers are received for it.

Each of these attempts will take at most O(c log3 n) communi-
cation rounds, w.h.p., but the question is, how many attempts are
needed until all of the lookup requests are successful, no matter
which data items have been selected for them. The following theo-
rem gives an answer to this, which implies Theorem 1.2.

THEOREM 3.5. For any set of n lookup requests out of a set U
of polynomial size with one request per node, the lookup protocol
can serve all requests in a guaranteed number of O(log n) attempts
and needs at most O(c log4 n) communication rounds altogether,
w.h.p.

PROOF. Let us consider any fixed attempt and let s be the num-
ber of remaining lookup requests. For simplicity, let us view the
routing of packets in the dynamic de Bruijn graph as routing them
along the d-dimensional shuffle graph SH(d) with d = log n.

Let the threshold set by the lookup protocol be 2c/σ with σ =
1/(8e log n) so that Lemma 3.3 can be applied. A node in the shuf-
fle graph is called congested if 2c/σ packets for more than different
copies pass it, and let W be the set of all congested nodes. Note that
W is σ-sparse because in every subgraph SH(`) in SH(`) there
can be a total of at most (2c − 1)2` packets and therefore at most
(2c−1)2`/(2c/σ) ≤ σ2` nodes at level ` with at least 2c/σ pack-
ets. Furthermore, since the total number of packets is (2c − 1)s,
|W | ≤ d · (2c− 1)s/(2c/σ) = σds.

SinceH is a (σ, c/2)-expander, there can be at most |W | lookup
requests with at least c/2 requests passing through nodes in W
because otherwise we would have a σ-sparse c/2-bundle F with
|ΓF (U(F ))| < |U(F )|. Hence, at most |W | = σds = s/8e of
the lookup requests fail. Therefore, at most O(log n) attempts are
necessary until all requests have been served.

3.5 The insert protocol
The insert protocol is similar to the lookup protocol, with the dif-

ference that we play a collision game at the destinations (first used
in [7] in the context of PRAM simulations) to keep the number of
copies each node has to store as small as possible. The protocol
proceeds in rounds. In each round, every remaining insert request
generates a packet for each of its 2c−1 destinations, and a packet is
discarded in transit if it reaches a region for some level ` with more
than γc log2 n served copies in that level (see the lookup protocol).
Besides the normal packets, also special counter packets are sent
through the network whose sole purpose is to count for how many
copies there are packets destined for each of the quorum regions.
These counter packets can be combined during the routing so that
they can be handled in O(c log2 n) communication rounds, w.h.p.
[24]. A quorum region will only accept insert requests destined for
it once its count is at most γc log n, where γ > 1 is a sufficiently
large constant. If this is the case, the quorum region will send back
acknowledgements for all packets reaching it that will split appro-
priately in order to inform all relevant sources. An insert request is
successful in that round if at least c acknowledgements are received
for it.

This insert protocol has the following performance, which im-
plies Theorem 1.3.

THEOREM 3.6. For any set of n insert requests out of a set U of
polynomial size with one request per node, the insert protocol can
serve all requests in a guaranteed number of O(log n) attempts
and needs at most O(c log4 n) communication rounds altogether,
w.h.p. Furthermore, every node has to store at most O(c log n)
copies.

PROOF. Consider any fixed attempt and let s be the number of
remaining insert requests. For simplicity, we again view the routing
of packets in the dynamic de Bruijn graph as routing them along the
d-dimensional shuffle graph SH(d) with d = log n.

Let the threshold for the intermediate levels be 2c/σ with σ =
1/(8e log n) and the threshold for the final level be 2γc. A node
in an intermediate level is congested if packets for more than 2c/σ
different copies pass it, and a node in the final level is congested
if packets for more than 2γc different copies reach it. Let W1 be
the set of all intermediate congested nodes and W2 be the set of all
final congested nodes. From the previous proof we know that W1

is σ-sparse and |W1| ≤ σds, and it is easy to see that |W2| ≤ s/γ.
Let S be the set of failed lookup requests. Then either S and W1

form a σ-sparse c/2-bundle or S and W2 form a c/2-bundle. In
the first case, we know from the previous proof that |S| ≤ s/8e. In
the second case, |S| ≤ |W2|/(λc) for some constant 0 < λ < 1
because H is a (λ, c/2, 1/γ)-expander if γ is sufficiently large. In
both cases, |S| ≤ s/8e. Hence, at most O(log n) attempts are
necessary until all requests have been served.

Since each node only starts to accept packets once the total num-
ber of different copies in it with packets is below 2γc, every node
only has to store O(c) copies at the end. Moving from nodes to
regions, this means that every quorum region has to store at most
O(c log n) copies.

4. ROBUST RANDOM ID GENERATION
In order to generate a random ID for a node, we use a verifiable

secret sharing (VSS) scheme. In VSS, a dealer D tries to store
a secret s in n nodes so that it can be reliably recovered. More
precisely, a protocol on n nodes is called a (n, k)-VSS scheme
if, for any adversary owning k nodes, the following requirements
hold:



• Privacy: If D is honest, then the adversary’s view during the
sharing phase reveals no information about s.

• Correctness: If D is honest, then the reconstructed value is
always equal to the secret s.

• Commitment: Even if D is dishonest, any successful execu-
tion of the sharing phase determines a unique value s∗ which
will be reconstructed at the reconstruction phase.

A protocol fulfilling all these properties is, for example, the bn−1
4
c-

VSS in [12]. For completeness, we present it here:

• Sharing phase:

1. D chooses a random bivariate polynomial F ∈ K[x, y]
of degree (at most) k in each variable s.t. F (0, 0) = s.
It sends to each player Pi the (univariate) polynomials
fi(x) = F (x, i) and gi(y) = F (i, y).

2. Player Pi sends to each player Pj the value gi(j).

3. Player Pi broadcasts a list Li of players Pj for whom
it holds that fi(j) 6= gj(i).

• Local computation (by each player):

1. Add edge (i, j) to the consistency graph G on n nodes
if Pi is not in Lj and Pj is not in Li.

2. Find a maximal matching in Ḡ.

3. Define a vertex set C to include all vertices not in the
matching. (C is a clique in G.)

4. Define ADD to be the set of vertices i s.t. i 6∈ C and
there exist 2k + 1 nodes j ∈ C such that (i, j) ∈ G.

5. If |C| + |ADD| ≥ 3k + 1 then accept the sharing;
otherwise, disqualify the dealer.

• Reconstruction phase: Each Pi ∈ C∪ADD provides fi(0).
Use error correction on {fi(0)}i∈C∪ADD to recover the poly-
nomial g0(y) = F (0, y). Compute g0(0).

The problem with applying it to our setting is that it uses a broad-
cast operation to disseminate information and it assumes the set of
nodes to be static. However, it can be adapted so that it can be used
to generate a random ID in a dynamic, asynchronous environment
without a broadcast channel. This works as follows (the number of
adversarial nodes is assumed to be at most k/6):

Suppose that node u wants to generate a new ID and let G be the
group of nodes u knows in its quorum region Ru (which includes
all honest node but may not include all adversarial nodes). Then u
asks all nodes v ∈ G to execute the VSS scheme above on G for a
secret sv picked at random from [0, 1) by v. If v knows more than
4k nodes in G, then v executes step 1 of the sharing phase on sv

and attaches G to its messages; otherwise, it aborts. Every node
w ∈ G that receives a message from v with the same G it received
from u executes step 2 of the sharing phase. Every node w′ ∈ G
that receives step 2-messages from at least |G|−k/6 nodes w ∈ G
for some v, computes Lv

w′ and sends Lv
w′ to u. Once u has received

from at least |G| − k/6 nodes w ∈ G Lv
w’s for all nodes v in some

set S ⊆ G with |S| = |G| − k/2, u starts the local computation
phase to determine the set P of all v with |Cv|+|ADDv| ≥ 3k+1.
If |P | ≥ |G| − k, then u sends to each v ∈ G an ID reconstruc-
tion request together with P and {(Cv, ADDv)}v∈P . Each node
w ∈ G receiving an ID reconstruction request from u forwards this
request to all other nodes in G. Each node w ∈ G receiving the
same ID reconstruction request from at least |G| − k/6 nodes in G

waits until it has sent Lp
w to u for all p ∈ P and afterwards initi-

ates the reconstruction phase by sending {(fp
w(0), Lp

w)}p∈P to all
v ∈ G. Each node w ∈ G receiving at least |G| − k/3 reconstruc-
tion messages for all p ∈ P first checks if there is a p ∈ P s.t. no
change of Lp

i for≤ k/6 messages it received together with suitable
Lp

i s for the ≤ k/3 missing messages would fulfill the conditions
on Cp and ADDp. If so, it aborts. Otherwise, it recovers gp

0(y) for
every p, computes x =

L
p∈P g0(y), and sends x to u.

We show the correctness with two lemmata, using the assump-
tion that all honest nodes in G know each other and at most k/6
nodes in G are adversarial.

LEMMA 4.1. In any case in which there is an honest node v
that computes some ID x in the ID generation scheme initiated by
some (honest or adversarial) node u, x must be random and no
honest node computes a value different from x.

PROOF. First of all, an honest node v only participates in the
ID generation stage if |G| > 4k, i.e. G is sufficiently large for
the VSS-protocol in [12] with threshold k to work. Second, notice
that every honest node v ∈ G will only reveal any of its private
information about keys xw if it received at least |G| − k/6 votes
concerning the ID reconstruction message from u matching the re-
construction message it got from u. Thus, P and (Cp, ADDp)p∈P

are fixed for v at that stage. Furthermore, due to at most k/6
adversarial nodes, no honest node can have a different view of
P and (Cp, ADDp)p∈P when revealing its private information.
Hence, at that point where the first honest node reveals private in-
formation about some keys, no adversarial node can influence P or
(Cp, ADDp)p∈P any more for the honest nodes.

Also, at that point where the first honest node v reveals private
information, it must have sent Lp

v’s for all p ∈ P to u. Thus, it must
have received gp

i (j)’s from at least |G| − k/6 nodes in G for all
p ∈ P . This, in turn, means that for each p ∈ P at least |G| − k/3
honest nodes in G must have received a pair (fp

i (x), gp
i (y)) from p

before any private information is revealed by any honest node. Let
us call these nodes p-safe.

Now, any honest node v that is convinced that the sharing for
some p ∈ P is successful must have used at least |G| − 5k/6
fp

i (0)’s from p-safe honest nodes, because among the at least |G|−
k/3 fp

i (0)’s it receives from nodes in G, at most k/6 can come
from adversarial nodes and at most k/3 can come from non-p-safe
honest nodes. If v is convinced of the correct sharing for p, then
because it may have changed Lp

i ’s from at most k/6 of the p-safe
honest nodes to justify this. Hence, at least |G| − k fp

i (0)’s from
p-safe nodes will be considered when revealing p’s secret which,
according to [12], will recover a unique, unbiased value xp.

Because |P | ≥ |G| − k and |G| > 4k in order for an honest
node v to participate, at least one xp must have been generated by
an honest node. This xp is random and unknown to the adversarial
nodes until (Cp, ADDp)p∈P is fixed. Hence, when v is convinced
that the recovery phase succeeded, it computes a random ID x.

LEMMA 4.2. Any honest node u initiating the random ID gen-
eration scheme will get the same value x back from at least |G| −
k/3 nodes in G.

PROOF. If u is honest, then it will wait until it has at least |G|−k/6
nodes w ∈ G that sent Lv

w’s to u for all nodes v of some set S ⊆ G
with |S| ≥ |G| − k/2. In this case, at least |G| − k/3 honest
nodes w must have sent Lv

w’s for all nodes in S, and therefore at
least |G| − k/3 honest nodes will initiate the reconstruction phase.
This makes sure that every honest node in G receives reconstruction
messages from at least |G| − k/3 honest nodes in G, which allows



them to recover the keys xp. Notice that no honest node will abort,
because if u makes sure that the conditions for ADDp and Cp are
fulfilled for every p ∈ P , then every honest node can find correc-
tions for the at most k/6 Lp

i ’s it received from adversarial nodes
and can come up with suitable Lp

i ’s for the at most k/3 missing
nodes so that the conditions on ADDp and Cp are met. If these
conditions can be met, it follows from [12] that unique keys can
be recovered from the received parts, and from the lemma above it
follows that these keys must be unbiased, and at least one of them
must be random. Hence, all honest nodes in G that participate in
the recovery, which are at least |G| − k/3, will agree on the same,
random value for x.

5. CONCLUSIONS
In this paper we showed that, on a high level, a scalable DHT

can be designed that is provably robust against adaptive adversarial
join-leave attacks as well as insert and lookup attacks. Certainly,
low-level protocols still have to be designed for our operations that
work well and correctly in an asynchronous environment. We be-
lieve that designing such protocols is possible though their design
and formal correctness proofs may require a significant effort.
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