Multi-key Fully-Homomorphic Encryption in the Plain Model

Prabhanjan Ananth Abhishek Jain
University of California, Santa Barbara
Johns Hopkins University

Zhengzhong Jin
Johns Hopkins
University

Giulio Malavolta
Carnegie Mellon University University of California,

Berkeley

Multi-key Fully-Homomorphic Encryption [LTV12]

Multi-key Fully-Homomorphic Encryption [LTV12]

Multi-key Fully-Homomorphic Encryption [LTV12] Public Keys: $\mathbf{p k}_{\mathbf{1}} \quad \mathbf{p k}_{2} \quad \ldots \quad \mathbf{p k}_{N}$

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:	$\mathbf{p k}_{1}$	$\mathbf{p k}_{2}$	\cdots	$\mathbf{p k}_{\boldsymbol{N}}$
Ciphertexts:	m_{1}	m_{2}		m_{N}

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:	$\mathbf{p k}_{\mathbf{1}}$	$\mathbf{p k}_{2}$	\cdots	$\mathbf{p k}_{\boldsymbol{N}}$
Ciphertexts:	m_{1}	m_{2}		m_{N}

C

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:	$\mathbf{p k}_{\mathbf{1}}$		$\mathbf{p k}_{2}$	\ldots
Ciphertexts:	m_{1}		$\mathbf{p k}_{\boldsymbol{N}}$	
		C	$\boxed{m_{2}}$	m_{N}

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:	$\mathbf{p k}$	$\mathbf{p} \mathbf{k}_{2}$	\cdots	$\mathbf{p k}_{\boldsymbol{N}}$
Ciphertexts:	m_{1}		m_{2}	m_{N}
		C	$C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$	

Decryption
Protocol:

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:
Ciphertexts:
Decryption

Multi-key Fully-Homomorphic Encryption [LTV12]

- Security: adversary can learn nothing beyond $C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$.

Multi-key Fully-Homomorphic Encryption [LTV12]

- (Implicit) Reusability: decryption can run for different $C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ without re-generating the public keys/ciphertexts.

Multi-key Fully-Homomorphic Encryption [LTV12]

- (Implicit) Reusability: decryption can run for different $C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ without re-generating the public keys/ciphertexts.

Multi-key Fully-Homomorphic Encryption [LTV12]

Public Keys:
pk_{1}
pk ${ }_{2}$
...
$\mathbf{p k}_{N}$
Ciphertexts:

m_{N}
Decryption Protocol:

- (Implicit) Reusability: decryption can run for different $C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ without re-generating the public keys/ciphertexts.

Multi-key Fully-Homomorphic Encryption [LTV12]

- (Implicit) Reusability: decryption can run for different $C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ without re-generating the public keys/ciphertexts.

MK-FHE with 1-Round Decryption [MW16]

MK-FHE with 1-Round Decryption [MW16]

MK-FHE with 1-Round Decryption [MW16]

Public Recovery:

$$
C\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

Applications

Applications

- 2-round multiparty computation [MW16]
- Spooky encryption [DHRW16]
- Homomorphic secret sharing [BGI16, BGI17]
- obfuscation \& functional encryption combiners [AJNSY16, AJS17]
- Multiparty obfuscation [HIJKSY17]
- Homomorphic time-lock puzzles [MT19,BDGM19]
- Ad-hoc multi-input functional encryption [ACFGOT20]
-

Applications

- 2-round multiparty computation [MW16]
- Spooky encryption [DHRW16]
- Homomorphic secret sharing [BGI16, BGI17]
- obfuscation \& functional encryption combiners [AJNSY16, AJS17]
- Multiparty obfuscation [HIJKSY17]
- Homomorphic time-lock puzzles [MT19,BDGM19]
- Ad-hoc multi-input functional encryption [ACFGOT20]
-

Prior works on Multi-key FHE with 1-round decryption

- [CM15, MW16, BP16, PS16] need a trusted setup.
- [DHRW16] sub-exponentially secure indistinguishable obfuscation.

In the plain model, does Multi-key FHE with 1-round decryption exist?

Our Results

Our Results

1. Multi-key FHE with 1-round decryption in the plain model from Learning with Error (LWE), Ring-LWE, and Decisional Small Polynomial Ratio problem.

- O(1)-party Multi-key FHE from only LWE.

Our Results

1. Multi-key FHE with 1-round decryption in the plain model from Learning with Error (LWE), Ring-LWE, and Decisional Small Polynomial Ratio problem.

- O(1)-party Multi-key FHE from only LWE.

2. Multiparty Homomorphic Encryption (a weaker notion of MK-FHE) from LWE.

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Multiparty Homomorphic Encryption: A weakening of MK-FHE

$$
\text { Public Recovery: } \quad C \text {, Partial Decryptions } \rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

Multiparty Homomorphic Encryption: A weakening of MK-FHE

$$
\text { Public Recovery: } \quad C \text {, Partial Decryptions } \rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

- It implies 2-round reusable multiparty computation with compact communication complexity.

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Public Keys:
pk_{1}
Ciphertexts: \square
m_{1}

pk ${ }_{2}$
... $\mathbf{p k}_{N}$

m_{2}

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Public Recovery: C, Partial Decryptions $\rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$

Multiparty Homomorphic Encryption: A weakening of MK-FHE

Public Recovery: C, Partial Decryptions $\rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$

- Reusability: public keys can be reused for different circuits.
- Compactness: communication complexity is independent of the circuit.

Multiparty Homomorphic Encryption: A weakening of MK-FHE

C, Partial Decryptions $\rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$

- Reusability: public keys can be reused for different circuits.
- Compactness: communication complexity is independent of the circuit.

Multiparty Homomorphic Encryption: A weakening of MK-FHE

C, Partial Decryptions $\rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$

- Reusability: public keys can be reused for different circuits.
- Compactness: communication complexity is independent of the circuit.

Multiparty Homomorphic Encryption: A weakening of MK-FHE

C, Partial Decryptions $\rightarrow C\left(m_{1}, m_{2}, \ldots, m_{N}\right)$

- Reusability: public keys can be reused for different circuits.
- Compactness: communication complexity is independent of the circuit.
- It implies 2-round Multiparty Computation.

Our Approach

Our Approach

Our Approach

Our Approach

Our Approach

Our Approach

Reusable MPC
 Multi-key FHE

Another $2^{\text {nd }}$ Round:

- [BL20], from bilinear maps.
- [BGMM20], from DDH or Succinct $1^{\text {st }} \mathrm{msg}$ MPC

Our Approach

Reusable MPC
 Multi-key FHE

Another $2^{\text {nd }}$ Round:

- [BL20], from bilinear maps.
- [BGMM20], from DDH or Succinct $1^{\text {st }} \mathrm{msg}$ MPC

Our Approach

2nd Round: $\xrightarrow{C} \leftarrow^{C} \quad \cdots \xrightarrow{C} \quad$ [BL20], from bilinear maps.
Another $2^{\text {nd }}$ Round: $\xrightarrow{C^{\prime}}$ C $^{C^{\prime}} \quad \cdots \xrightarrow{C^{\prime}} \quad$ [BGMM20], from DDH or Succinct $1^{\text {st }} \mathrm{msg}$ MPC

Our Approach

Another $2^{\text {nd }}$ Round:

- Reusability: $1^{\text {st }}$ round is reusable.
- See Also:
- [BL20], from bilinear maps.
- [BGMM20], from DDH or Succinct $1^{\text {st }} \mathrm{msg}$ MPC

Our Approach

Another $2^{\text {nd }}$ Round:

$\cdots \xrightarrow{C^{\prime}}$

- [BL20], from bilinear maps.
- [BGMM20], from DDH or Succinct $1^{\text {st }} \mathrm{msg}$ MPC

Reusable MPC \rightarrow Multi-key FHE

Reusable MPC \rightarrow Multi-key FHE

- [LTV12] is in plain mode, but has a multi-round decryption protocol.

Reusable MPC \rightarrow Multi-key FHE

- [LTV12] is in plain mode, but has a multi-round decryption protocol.

Reusable MPC \rightarrow Multi-key FHE

- [LTV12] is in plain mode, but has a multi-round decryption protocol.

- Run reusable MPC for $\operatorname{Dec}(\cdot)$.

$$
C \quad C\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

Multi-round Decryption:

Reusable MPC \rightarrow Multi-key FHE

- [LTV12] is in plain mode, but has a multi-round decryption protocol.

$$
C \quad C\left(m_{1}, m_{2}, \ldots, m_{N}\right)
$$

- Run reusable MPC for $\operatorname{Dec}(\cdot)$.

Our Approach

Our Approach

Reusable MPC: A Self-Synthesis Approach

Reusable MPC: A Self-Synthesis Approach

Reusable MPC: A Self-Synthesis Approach

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

1-time MPC

2-times MPC

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

1-time MPC

2-times MPC

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

1-time MPC

2-times MPC

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

1-time MPC

2-times MPC

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Reusable MPC: A Self-Synthesis Approach

1-time MPC

2-times MPC

- Use 1-time MPC to generate 2 sets of fresh new $1^{\text {st }}$ round messages

Round Compression to Rescue

Round Compression to Rescue

- Garble the $3^{\text {rd }}$ round next message function Next ${ }^{i}$ to compress to 2 rounds.

Round Compression to Rescue

- Garble the $3^{\text {rd }}$ round next message function Next i to compress to 2 rounds.

Round Compression to Rescue

- Garble the $3^{\text {rd }}$ round next message function Next i to compress to 2 rounds.

Full-Fledged Tree-Based Approach

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis
Given C, walk down the tree according to C.

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis

Given C, walk down the tree according to C.

$$
\text { e.g. } C=01 \text {... }
$$

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis
Given C, walk down the tree according to C.

$$
\text { e.g. } C=01 \text {... }
$$

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis Given C, walk down the tree according to C.

$$
\text { e.g. } C=01 \text {... }
$$

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis Given C, walk down the tree according to C.

$$
\text { e.g. } C=01 \text {... }
$$

1-time MPC

Full-Fledged Tree-Based Approach

- From 2-times usable to reusable:

Recursively apply the self-synthesis Given C, walk down the tree according to C.

$$
\text { e.g. } C=01 \text {... }
$$

1-time MPC
... Eval. C
(1. Time Complexity Blow Up

(1. Time Complexity Blow Up

- For 1-time MPC in plain model, Time $\left(1^{\text {st }}\right.$ Round $) \approx|C| \cdot \operatorname{poly}(\lambda)$

(1. Time Complexity Blow Up
- For 1-time MPC in plain model, Time $\left(1^{\text {st }}\right.$ Round $) \approx|C| \cdot \operatorname{poly}(\lambda)$

© Time Complexity Blow Up

- For 1-time MPC in plain model, Time (1st Round) $\approx|C| \cdot \operatorname{poly}(\lambda)$

© Time Complexity Blow Up

- For 1-time MPC in plain model, Time (1st Round) $\approx|C| \cdot \operatorname{poly}(\lambda)$

(1. Time Complexity Blow Up

- For 1-time MPC in plain model, Time (1st Round) $\approx|C| \cdot \operatorname{poly}(\lambda)$

© Time Complexity Blow Up

- For 1-time MPC in plain model, Time (1st Round) $\approx|C| \cdot \operatorname{poly}(\lambda)$

Time(Root node) is exponential in λ

Necessary Condition for Recursion

Necessary Condition for Recursion

- Succinct 1-time MPC:

Time($1^{\text {st }}$ Round) is independent of $|C|$.

1-time MPC

Necessary Condition for Recursion

- Succinct 1-time MPC:

Time($1^{\text {st }}$ Round) is independent of $|C|$.

- [MW16] satisfies succinctness, but in CRS model.

Necessary Condition for Recursion

- Succinct 1-time MPC:

Time($1^{\text {st }}$ Round) is independent of $|C|$.
-
[MW16] satisfies succinctness, CRS but in CRS model.

Necessary Condition for Recursion

- Succinct 1-time MPC:

Time($1^{\text {st }}$ Round) is independent of $|C|$.

- [MW16] satisfies succinctness, CRS succinct MPC but in CRS model.
- In fact succinct 1-time MPC in preprocessing mode/ suffices.

Plain Model

1-time MPC

Thank you!

