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What assumptions are sufficient for NIZKs?
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Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20] 
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

• NIZKs from discrete-log related assumptions?



Question (1): Do there exist NIZKs from DDH?
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Pairing vs Non-pairing Groups

Are the gaps inherent?

Pairing Non-Pairing

Attribute-Based 
Encryption [SW04,GPSW06] ?

Identity-Based 
Encryption [BF01] [DG17]

NIZKs [CHK03,GOS06] ?∗

* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]
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Our Result (1):

Zero-Knowledge Soundness CRS

I Statistical Non-adaptive Random

II Computational Adaptive Random

• From sub-exponential DDH in the standard non-pairing groups.

• NIZK arguments for NP:



Sub-exponential DDH

• ∃ 0 < 𝑐 < 1, ∀ non-uniform PPT adversary 𝐷, ∀ sufficiently large 𝜆,

|Pr 𝐷 1𝜆, 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏 = 1 − Pr 𝐷 1𝜆, 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 = 1 | < 𝟐−𝝀
𝒄

𝑎 ← 𝑍𝑝, 𝑏 ← 𝑍𝑝, 𝑐 ← 𝑍𝑝
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Our Result (2):

Statistical Zap arguments from sub-exponential DDH, 
with non-adaptive soundness.

Statistical Zaps from group-based assumptions 

were not known.
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• Laconic communication 
on sender side

|     | ≤ 𝝀
𝒙

…

• Additive reconstruction:

Sender Receiver

Sender’s Side: Laconic Communication

|     | ≤ 𝝀
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𝑭
(multi-bit output)

• Function Hiding: 𝐹 is hiding. 

…

• Additive reconstruction:

Sender Receiver

Receiver’s Side: Function Hiding
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Interactive TDH vs Trapdoor Hash Function [DGIMMO19]
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• [DGIMMO19] TDH for index predicate & linear functions from 
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• [BKM20] TDH for constant-degree polynomials from 
DDH/LWE/QR/DCR

Applications: 
• Secure computation, rate-1 oblivious transfer, 

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

By leveraging the power of interaction, 
can we handle a larger class of circuits?
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for 𝐓𝐂𝟎 from DDH.

(TC0: constant-depth threshold circuits.)

(Can be generalized to poly-round for P/𝑝𝑜𝑙𝑦 circuits)
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Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

∀ fixed 𝑭 ∈ 𝓕

PPT. Adversary

Pr
,𝒌
[𝑯𝒌 𝒙 = 𝑭 𝒙 ] ≤ negl
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• Verifiable Delay Functions [LV20], 
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

Can we build CIH for a larger class of circuits from 
assumptions other than LWE?
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Intermediate Result (2):

Correlation Intractable Hash for TC0

from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we 
can also obtain CIH for 𝑂(log log 𝜆)-depth threshold circuits. 
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Correlation Intractability needs to at least capture the Com.Ext(𝐭𝐝,⋅) circuit 
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If we have CIH for ElGamal Decryption circuit from DDH, 
then we can hope to construct NIZKs from DDH.
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• [BKM20] used trapdoor commitment from LPN, where
Com. Extraction td,⋅ ∈ { approximate 𝑂(1)-degree poly. }

TDH for 𝑶(𝟏)-degree poly.

𝑯𝒌 ⋅
CIH for approximable relations 

of 𝑶(𝟏)-degree poly.

Approximating the ElGamal Decryption by 

𝑶(𝟏)-degree poly is not known
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Interactive TDH → CIH

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for 𝐓𝐂𝟎 → CIH for 𝐓𝑪𝟎

• Construction of ITDH



Recall: Interactive TDH



Recall: Interactive TDH
Sender



Recall: Interactive TDH
Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver

encoding decoding



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

encoding decoding



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

encoding decoding

|      | ≤ 𝝀

• Laconic communication 
on sender side:



Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

• Function Hiding: 𝑭 is hiding. 

encoding decoding

|      | ≤ 𝝀

• Laconic communication 
on sender side:
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𝒙 𝑭

⊕

…CIH key: 𝒌 = 𝒖 ← 0,1 𝑛,

𝒖𝐻𝒌 𝒙 =

Guess

Guess

…

Sender Receiver

Ԧ𝑒
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Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕
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…

Sender Receiver

𝑖th receiver’s 
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Function Hiding
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Interactive TDH for 𝐓𝐂𝟎
• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH
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• Threshold Gate (𝒙 ∈ 0,1 𝒏):

1, weight Ԧ𝑥 ≥ 𝑡

0, Otherwise
Th𝑡 𝒙 =

• TC0: constant depth circuits consists of {NOT, Threshold} gates

• For simplicity, let’s only consider the threshold gates.
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ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

𝒙 weight(⋅ ⊕ 𝒚)
TDH for weight( Ԧ𝑥 ⊕ 𝒚)

TDH for ≥? 𝑡

• An overview
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mod (𝑛 + 1)

𝑒 𝑑

How do we use TDH to compute 𝒆 + 𝒅 mod 𝑛 + 1 ≥? 𝒕 ?
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We extend TDH (from DDH) 
to linear functions over 𝒁𝒏+𝟏
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Comparison as a Linear Function

• A simpler case: equality check 𝑒 =? 𝑑

0 0 1 0 0 0𝑒 → 1𝑒 =

𝑑 → 1𝑑 = 0 0 0 1 0 0

0 1 … n

(𝑒 =? 𝑑) = < 1𝑒 , 1𝑑 >

𝑒, 𝑑 ∈ [0, 1, … , 𝑛]: a poly range!
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Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

⇔< 1𝑒 ,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >= 1

⇔ ∃? 𝑗 ≥ 𝑡 ∶ 𝑒 + 𝑑 mod 𝑛 + 1 = 𝑗

𝑒 = 𝑗 − 𝑑 mod 𝑛 + 1Equality Check!
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𝑒 𝑑

1𝒆

𝑒′ 𝑑′⊕ = weight(𝒙 ⊕ 𝒚) ≥? 𝑡

<⋅,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >

Intermediate 
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Nonlinear

Intermediate 
Processing by Receiver



Summary of Results

• NIZKs from sub-exponential DDH:

Zero-Knowledge Soundness CRS

I Statistical Non-adaptive Random

II Computational Adaptive Random

• Statistical Zap arguments from sub-exponential DDH.

• 𝑂(1)-round Interactive Trapdoor Hashing Protocol for TC0

• Correlation Intractable Hash for TC0.



Open Questions

• NIZKs from polynomial-hard DDH?

• NIZKs from public key encryption?

• Correlation intractable hash for P/poly from DDH?



Thank you!

Q & A


