# Non-Interactive Zero Knowledge from Sub-exponential DDH

Abhishek Jain

Zhengzhong Jin













- **Completeness:** If  $x \in L$ , verifier accepts the honestly generated proof.
- Soundness: for any  $x \notin L$ , the verifier rejects.
- **Zero-Knowledge:** the proof reveals nothing beyond  $x \in L$ .



- **Completeness:** If  $x \in L$ , verifier accepts the honestly generated proof.
- Soundness: for any  $x \notin L$ , the verifier rejects.
- **Zero-Knowledge:** the proof reveals nothing beyond  $x \in L$ .



- **Completeness:** If  $x \in L$ , verifier accepts the honestly generated proof.
- Soundness: for any  $x \notin L$ , the verifier rejects.
- **Zero-Knowledge:** the proof reveals nothing beyond  $x \in L$ .

## What assumptions are sufficient for NIZKs?

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)
- NIZKs from discrete-log related assumptions?

### Question (1): Do there exist NIZKs from DDH?

#### Pairing vs Non-pairing Groups

|                               | Pairing       | Non-Pairing |
|-------------------------------|---------------|-------------|
| Attribute-Based<br>Encryption | [SW04,GPSW06] | ?           |
| Identity-Based<br>Encryption  | [BF01]        | [DG17]      |
| NIZKs                         | [CHK03,GOS06] | ?*          |

#### Pairing vs Non-pairing Groups

|                               | Pairing       | Non-Pairing |  |
|-------------------------------|---------------|-------------|--|
| Attribute-Based<br>Encryption | [SW04,GPSW06] | ?           |  |
| Identity-Based<br>Encryption  | [BF01]        | [DG17]      |  |
| NIZKs                         | [CHK03,GOS06] | ?*          |  |
| Are the gaps inherent?        |               |             |  |

#### Pairing vs Non-pairing Groups

|                               | Pairing       | Non-Pairing |  |
|-------------------------------|---------------|-------------|--|
| Attribute-Based<br>Encryption | [SW04,GPSW06] | ?           |  |
| Identity-Based<br>Encryption  | [BF01]        | [DG17]      |  |
| NIZKs                         | [CHK03,GOS06] | ?*          |  |
| Are the gaps inherent?        |               |             |  |

\* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]



#### Our Result (1):

• NIZK arguments for NP:





From sub-exponential DDH in the standard non-pairing groups.

## Sub-exponential DDH

•  $\exists 0 < c < 1, \forall$  non-uniform PPT adversary  $D, \forall$  sufficiently large  $\lambda$ ,

$$|\Pr[D(1^{\lambda}, g, g^{a}, g^{b}, g^{ab}) = 1] - \Pr[D(1^{\lambda}, g, g^{a}, g^{b}, g^{c}) = 1]| < 2^{-\lambda^{c}}$$

$$a \leftarrow Z_p$$
,  $b \leftarrow Z_p$ ,  $c \leftarrow Z_p$ 

#### Our Result (2):

# Statistical Zap arguments from sub-exponential DDH, with non-adaptive soundness.

#### Our Result (2):

Statistical Zap arguments from sub-exponential DDH, with non-adaptive soundness.

Statistical Zaps from group-based assumptions were not known.

<u>Sender</u>

**Sender** 

**Receiver** 












## Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)



## Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)



## Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)



### Sender's Side: Laconic Communication



## Sender's Side: Laconic Communication



## Receiver's Side: Function Hiding



















Sender  $\vec{x} \longrightarrow \underbrace{hk \quad ek(F)}_{H_{hk}(\vec{x})} \longleftarrow F$   $\vec{e} \quad \vec{d}$ 





















Trapdoor Hash Functions Previous Works:

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

### **Previous Works:**

- [DGIMMO19] TDH for index predicate & linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

By leveraging the power of interaction, can we handle a larger class of circuits?

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

```
Intermediate Result (1):

0(1)-round Interactive TDH

for TC<sup>0</sup> from DDH.
```





(Can be generalized to poly-round for P/poly circuits)

### Correlation Intractable Hash (CIH) [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

## Correlation Intractable Hash (CIH) [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

• A Family of Hash:  $\{H_k(\vec{x})\}_k$
- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

**Correlation Intractable for a Circuit Class** *F*:

- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

**Correlation Intractable for a Circuit Class** *F*:

 $\forall$  fixed  $F \in \mathcal{F}$ 

- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

**Correlation Intractable for a Circuit Class** *F*:

 $\forall$  fixed  $F \in \mathcal{F}$ 



PPT. Adversary

- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

**Correlation Intractable for a Circuit Class** *F*:

 $\forall \text{ fixed } \mathbf{F} \in \boldsymbol{\mathcal{F}}$ 



- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

**Correlation Intractable for a Circuit Class** *F*:

$$\forall \text{ fixed } F \in \mathcal{F}$$

$$k \leftarrow \text{Gen}(1^{\lambda})$$

$$\overrightarrow{x}$$
PPT. Adversary

- A Family of Hash:  $\{H_k(\vec{x})\}_k$
- Key Generation:  $k \leftarrow \text{Gen}(1^{\lambda})$

#### **Correlation Intractable for a Circuit Class** *F*:



$$\Pr[\mathbf{H}_{k}(\vec{x}) = \mathbf{F}(\vec{x})] \le \operatorname{negl}$$

**Previous Works:** 

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

#### **Previous Works:**

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

# Can we build CIH for a larger class of circuits from assumptions other than LWE?

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Intermediate Result (2): Correlation Intractable Hash for TC<sup>0</sup> from sub-exponential DDH. Intermediate Result (2): Correlation Intractable Hash for TC<sup>0</sup> from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we can also obtain CIH for  $O(\log \log \lambda)$ -depth threshold circuits.

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH





















**Special Soundness:** A witness can be extracted from two accepting transcripts  $(\alpha^*, \beta_0^*, \gamma_0^*), (\alpha^*, \beta_1^*, \gamma_1^*), \text{ if } \beta_0^* \neq \beta_1^*.$ 



**Special Soundness:** A witness can be extracted from two accepting transcripts  $(\alpha^*, \beta_0^*, \gamma_0^*), (\alpha^*, \beta_1^*, \gamma_1^*), \text{ if } \beta_0^* \neq \beta_1^*.$ 



**Special Soundness:** A witness can be extracted from two accepting transcripts  $(\alpha^*, \beta_0^*, \gamma_0^*), (\alpha^*, \beta_1^*, \gamma_1^*), \text{ if } \beta_0^* \neq \beta_1^*.$ If  $x \notin L$ , for any  $\alpha^*$ ,  $\exists$  unique  $\beta^*$  such that  $(\alpha^*, \beta^*, \cdot)$  can be accepted.


**Special Soundness:** A witness can be extracted from two accepting transcripts

 $(\alpha^*, \beta_0^*, \gamma_0^*), \ (\alpha^*, \beta_1^*, \gamma_1^*), \text{ if } \beta_0^* \neq \beta_1^*.$ 

If  $x \notin L$ , for any  $\alpha^*$ ,  $\exists$  unique  $\beta^*$  such that  $(\alpha^*, \beta^*, \cdot)$  can be accepted.

 $\alpha^*$  — the unique  $\beta^*$ 



**Special Soundness:** A witness can be extracted from two accepting transcripts

 $(\alpha^*, \beta_0^*, \gamma_0^*), \ (\alpha^*, \beta_1^*, \gamma_1^*), \text{ if } \beta_0^* \neq \beta_1^*.$ If  $x \notin L$ , for any  $\alpha^*$ ,  $\exists$  unique  $\beta^*$  such that  $(\alpha^*, \beta^*, \cdot)$  can be accepted. **BAD:**  $\alpha^*$  the unique  $\beta^*$ 







**BAD:**  $\alpha^* \longrightarrow$  the unique  $\beta^*$ Verifier accepts  $\Rightarrow \beta^* = \text{CIH}_k(\alpha^*) = \text{BAD}(\alpha^*)$ : Contradiction to Correlation Intractability





**Trapdoor Σ**-protocol











#### **BAD:**



#### **BAD:** $\alpha^*$



**BAD:**  $\alpha^*$  **Com.Ext(td,·)** 



**BAD:** 
$$\alpha^* \longrightarrow m^*$$







Correlation Intractability needs to at least capture the Com.Ext(td,·) circuit

**BAD:** 
$$\alpha^* \longrightarrow m^* \longrightarrow the unique bad \beta^*$$

#### Towards Instantiation from DDH: Main Challenges

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

• Instantiate Trapdoor Commitment from DDH

• Instantiate Trapdoor Commitment from DDH

Commitment  $\rightarrow$  ElGamal Encryption Extraction  $\rightarrow$  ElGamal Decryption

• Instantiate Trapdoor Commitment from DDH

Commitment  $\rightarrow$  ElGamal Encryption Extraction  $\rightarrow$  ElGamal Decryption

• Instantiate Trapdoor Commitment from DDH

Commitment  $\rightarrow$  ElGamal Encryption Extraction  $\rightarrow$  ElGamal Decryption

If we have CIH for *ElGamal Decryption circuit* from DDH, then we can hope to construct NIZKs from DDH.

 $H_k(\cdot)$ CIH for approximable relations of O(1)-degree poly.





CIH for approximable relations of O(1)-degree poly.

 $H_{k}(\cdot)$ 



• [BKM20] used trapdoor commitment from LPN, where Com. Extraction(td, $\cdot$ )  $\in$  { approximate O(1)-degree poly. }



Approximating the ElGamal Decryption by O(1)-degree poly is not known

• [BKM20] used trapdoor commitment from LPN, where Com.Extraction(td, $\cdot$ )  $\in$  { approximate O(1)-degree poly. }

What circuit class of CIH is sufficient to instantiate Fiat-Shamir from DDH?

### What circuit class of CIH is sufficient to instantiate Fiat-Shamir from DDH?

#### How to build CIH for such a circuit class?

**CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH

**CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH

### **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH

#### **Construct CIH for TC<sup>0</sup>**

### **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH

#### Construct CIH for TC<sup>0</sup>

O(1)-round ITDH for TC<sup>0</sup>


# **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH

#### Construct CIH for TC<sup>0</sup>

O(1)-round ITDH for TC<sup>0</sup>



Compute beyond O(1)-degree poly by leveraging interaction

# **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH



# **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH



# **CIH for TC<sup>0</sup>** suffices for building NIZKs from DDH



### Interactive TDH $\rightarrow$ CIH

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $T{\it C}^0$
- Construction of ITDH

**Sender** 

Sender



# Recall: Interactive TDH $\frac{\text{Sender}}{\vec{x}} \rightarrow F$







































#### Recall: Correlation Intractable for **F**



#### Recall: Correlation Intractable for **F**



 $\Pr[\underline{H}_{k}(\vec{x}) = F(\vec{x})] \le \operatorname{negl}$ 











Since it only depends on
# Proof of Correlation Intractability [BKM20]















# An Oversimplified Case: Guessing is independent of $\vec{x}$ $\forall \vec{x} \leftarrow \overleftarrow{}$ Pr[Guessing Correct]= $2^{-o(\lambda)}$ , **F**( $\vec{x}$ ) = $\vec{e} \oplus \vec{d}$ Equal! $H_k(\vec{x}) = \vec{e} \oplus \vec{u}$

# An Oversimplified Case: Guessing is independent of $\vec{x}$ $\forall \vec{x} \leftarrow \overleftarrow{}$ Pr[Guessing Correct]= $2^{-o(\lambda)}$ , F( $\vec{x}$ ) = $\vec{e} \oplus \vec{d}$ Equal! $H_k(\vec{x}) = \vec{e} \oplus \vec{u}$

$$\Pr_{\vec{u} \leftarrow \{0,1\}^n} \left[ \exists \vec{x} : \vec{d} = \vec{u} \right] \ge 2^{-O(\lambda)}$$
(Not too small)





If  $n \gg \lambda$ , contradiction!



If  $n \gg \lambda$ , contradiction!



 $\Pr[H_k(\vec{x}) = F(\vec{x})] \le \operatorname{negl}$ 



$$\frac{k \leftarrow \operatorname{Gen}(1^{\lambda})}{\vec{x}}$$

$$\Pr[\frac{H_k(\vec{x})}{k} = F(\vec{x})] \le \operatorname{negl}$$



$$\frac{k \leftarrow \operatorname{Gen}(1^{\lambda})}{\vec{x}}$$

chooses  $\vec{x}$  depending on k, which depends on the guessing



$$k \leftarrow \operatorname{Gen}(1^{\lambda})$$

$$\overrightarrow{x}$$

chooses  $\vec{x}$  depending on k, which depends on the guessing

**Function Hiding: also hides** 

Sender Receiver  $\vec{x} \rightarrow$ F i<sup>th</sup> receiver's messages  $(e_1, e_2, \dots, e_n)$   $(d_1, d_2, \dots, d_n)$ 

Sender Receiver  $\vec{x} \rightarrow$ F *i*<sup>th</sup> receiver's  $\leftarrow$  KGen(*F*, **st**<sub>*i*</sub>) messages  $(e_1, e_2, \dots, e_n)$   $(d_1, d_2, \dots, d_n)$ 

Sender Receiver  $\vec{x} \rightarrow$ F *i*<sup>th</sup> receiver's  $\leftarrow$  KGen(*F*, **st**<sub>*i*</sub>) messages  $(e_1, e_2, ..., e_n)$   $(d_1, d_2, ..., d_n)$ 

Sender **Receiver**  $\vec{x} \rightarrow$ F J *i*<sup>th</sup> receiver's  $\leftarrow$  KGen(F, st<sub>i</sub>)  $\approx$ messages  $(e_1, e_2, \dots, e_n)$   $(d_1, d_2, \dots, d_n)$ 



• Function Hiding:  $\forall F, \mathbf{st}_i, \operatorname{KGen}(F, \operatorname{st}_i) \approx_c \operatorname{Uniformly} \operatorname{Random} \operatorname{String}$ 

















• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

$$\lambda_1 < \lambda_2 < \lambda_3 \dots < \lambda_L$$

• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

$$\lambda_1 < \lambda_2 < \lambda_3 \dots < \lambda_L$$

From Guessing Correctness:

$$\Pr_{\vec{u} \leftarrow \{0,1\}^n} \left[ \exists \vec{x} : \vec{d} = \vec{u} \right] \ge 2^{-O(\lambda_1 + \lambda_2 \dots + \lambda_L)}$$
(Not too small)

• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

$$\lambda_1 < \lambda_2 < \lambda_3 \dots < \lambda_L$$



• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

$$\lambda_1 < \lambda_2 < \lambda_3 \dots < \lambda_L$$

Sparsity of 
$$\vec{d}$$
:From Guessing Correctness: $\Pr_{\vec{u} \leftarrow \{0,1\}^n} [\exists \vec{x}: \vec{d} = \vec{u}] \leq 2^{-\Omega(n)}$   
(Very small!) $\Pr_{\vec{u} \leftarrow \{0,1\}^n} [\exists \vec{x}: \vec{d} = \vec{u}] \geq 2^{-O(\lambda_1 + \lambda_2 \dots + \lambda_L)}$   
(Not too small)

If  $n \gg \lambda$ , Correlation Intractable!
#### Modified proof of Correlation Intractability

• Extend to O(1) rounds (or  $O(\log \log \lambda)$ -rounds):

$$\lambda_1 < \lambda_2 < \lambda_3 \dots < \lambda_L$$



If  $n \gg \lambda$ , Correlation Intractable!

# Interactive TDH for TC<sup>0</sup>

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for  $TC^0 \rightarrow CIH$  for  $TC^0$
- Construction of ITDH

• Threshold Gate  $(\vec{x} \in \{0,1\}^n)$ :

Th<sup>t</sup> 
$$(\vec{x}) = \begin{cases} 1, & \text{weight}(\vec{x}) \ge t \\ 0, & \text{Otherwise} \end{cases}$$

• Threshold Gate  $(\vec{x} \in \{0,1\}^n)$ :

Th<sup>t</sup> 
$$(\vec{x}) = \begin{cases} 1, & \text{weight}(\vec{x}) \ge t \\ 0, & \text{Otherwise} \end{cases}$$

• TC<sup>0</sup>: constant depth circuits consists of **{NOT, Threshold}** gates

• Threshold Gate  $(\vec{x} \in \{0,1\}^n)$ :

Th<sup>t</sup> 
$$(\vec{x}) = \begin{cases} 1, & \text{weight}(\vec{x}) \ge t \\ 0, & \text{Otherwise} \end{cases}$$

- TC<sup>0</sup>: constant depth circuits consists of **{NOT, Threshold}** gates
- For simplicity, let's only consider the threshold gates.

























#### Xor-then-Threshold Gate

Xor-then-Threshold = Threshold Gate • XOR

#### Xor-then-Threshold Gate

#### Xor-then-Threshold = Threshold Gate • XOR

$$\operatorname{Th}_{\vec{y}}^{t}(\vec{x}) = \begin{cases} 1, & \operatorname{weight}(\vec{x} \oplus \vec{y}) \geq t \\ 0, & \operatorname{Otherwise} \end{cases}$$









# weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of $\vec{x}$ weight $(\vec{x} \oplus \vec{y}) = \sum_{i} x_{i} \oplus y_{i}$

weight
$$(\vec{x} \oplus \vec{y})$$
 as a Linear Function of  $\vec{x}$   
weight $(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$   
 $= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i)$ 

weight
$$(\vec{x} \oplus \vec{y})$$
 as a Linear Function of  $\vec{x}$   
weight $(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$   
 $= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$ 

weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
 We extend TDH (from DDH)  
to linear functions over  $Z_{n+1}$   
$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
 We extend TDH (from DDH)  
to linear functions over  $Z_{n+1}$   
$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

• Use TDH for Linear Functions over  $Z_{n+1}$ 

weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
 We extend TDH (from DDH)  
to linear functions over  $Z_{n+1}$   
$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

• Use TDH for Linear Functions over  $Z_{n+1}$ 



weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
  

$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

• Use TDH for Linear Functions over  $Z_{n+1}$ 

$$\vec{x} \longrightarrow$$
 TDH for linear functions  
over  $Z_{n+1}$  weight( $\cdot \bigoplus \vec{y}$ )

weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
  

$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

• Use TDH for Linear Functions over  $Z_{n+1}$ 

 $\vec{x} \longrightarrow$   $r DH for linear functions over <math>Z_{n+1} \longrightarrow d$   $r Weight(\cdot \bigoplus \vec{y})$
weight( $\vec{x} \oplus \vec{y}$ ) as a Linear Function of  $\vec{x}$ 

weight
$$(\vec{x} \oplus \vec{y}) = \sum_{i} x_i \oplus y_i$$
  

$$= \sum_{i} (1 - x_i) \cdot y_i + x_i \cdot (1 - y_i) \mod (n+1)$$

• Use TDH for Linear Functions over  $Z_{n+1}$ 

$$\vec{x} \longrightarrow \qquad \text{TDH for linear functions} \qquad \longleftarrow \text{ weight}(\cdot \oplus \vec{y})$$

$$e \longleftarrow \qquad \text{over } Z_{n+1} \longrightarrow d$$
ow do we use TDH to compute  $(e + d) \mod (n + 1) \ge^{?} t$ ?

• A simpler case: equality check e = d

• A simpler case: equality check e = d

 $e, d \in [0, 1, \dots, n]$ : a poly range!

• A simpler case: equality check e = d

 $e, d \in [0, 1, \dots, n]$ : a poly range!

$$e \to 1_e = \begin{bmatrix} 0 & 1 & \cdots & n \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 $d \rightarrow 1_d = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}$ 

• A simpler case: equality check e = d

 $e, d \in [0, 1, \dots, n]$ : a poly range!

$$e \to 1_e = \begin{bmatrix} 0 & 1 & \cdots & n \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ d \to 1_d = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(e = {}^{?} d) = < 1_{e}, 1_{d} >$$

• Comparison:  $(e + d) \mod (n + 1) \ge^{?} t$ 

• Comparison:  $(e + d) \mod (n + 1) \ge^{?} t$ 

$$\Leftrightarrow \exists^{?} j \ge \mathbf{t} : (\mathbf{e} + \mathbf{d}) \mod (n+1) = j$$

• Comparison:  $(e + d) \mod (n + 1) \ge^{?} t$ 

$$\Leftrightarrow \exists^{?} j \geq t : (e + d) \mod (n + 1) = j$$

• Comparison:  $(e + d) \mod (n + 1) \ge^{?} t$ 

$$\Leftrightarrow \exists^{?} j \ge t : (e + d) \mod (n + 1) = j$$

Equality Check!  $e = (j - d) \mod (n + 1)$ 

• Comparison:  $(e + d) \mod (n + 1) \ge^{?} t$ 

$$\Leftrightarrow \exists^{?} j \geq t : (e + d) \mod (n + 1) = j$$

Equality Check!  $e = (j - d) \mod (n + 1)$ 

$$\Leftrightarrow < 1_e, \sum_{j \ge t} 1_{(j-d) \mod (n+1)} >= 1$$















# Summary of Results

• NIZKs from sub-exponential DDH:

|    | Zero-Knowledge | Soundness    | CRS    |
|----|----------------|--------------|--------|
| I. | Statistical    | Non-adaptive | Random |
| Ш  | Computational  | Adaptive     | Random |

- O(1)-round Interactive Trapdoor Hashing Protocol for  $TC^0$
- Correlation Intractable Hash for TC<sup>0</sup>.
- Statistical Zap arguments from sub-exponential DDH.

# Open Questions

- NIZKs from polynomial-hard DDH?
- NIZKs from public key encryption?
- Correlation intractable hash for P/poly from DDH?

# Thank you!

Q & A