Non-Interactive Zero Knowledge from Sub-exponential DDH

Abhishek Jain

Zhengzhong Jin

NOHNS HOPKINS

Non-Interactive Zero Knowledge (NIZK)

- Completeness: If $x \in L$, verifier accepts the honestly generated proof.
- Soundness: for any $x \notin L$, the verifier rejects.
- Zero-Knowledge: the proof reveals nothing beyond $x \in L$.

Non-Interactive Zero Knowledge (NIZK)

- Completeness: If $x \in L$, verifier accepts the honestly generated proof.
- Soundness: for any $x \notin L$, the verifier rejects.
- Zero-Knowledge: the proof reveals nothing beyond $x \in L$.

Non-Interactive Zero Knowledge (NIZK)

- Completeness: If $x \in L$, verifier accepts the honestly generated proof.
- Soundness: for any $x \notin L$, the verifier rejects.
- Zero-Knowledge: the proof reveals nothing beyond $x \in L$.

What assumptions are sufficient for NIZKs?

Prior Works

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

- Quadratic Residuosity Assumption (QR) [BFM88]
- Factoring [FLS90]
- Bilinear Maps [CHK03, GOS06, GOS06]
- Learning with Errors (LWE) [CCHLRRW19, PS19]
- Learning Parity with Noise and Trapdoor Hash Function [BKM20] (Trapdoor Hash Function is known from DDH/LWE/QR/DCR)
- NIZKs from discrete-log related assumptions?

Question (1): Do there exist NIZKs from DDH?

Pairing vs Non-pairing Groups

	Pairing	Non-Pairing
Attribute-Based Encryption	$[$ [SW04,GPSW06 $]$	$?$
Identity-Based Encryption	$[$ BFO1]	$[$ [DG17]
NIZKs	$[C H K 03, G O S 06]$	$?^{*}$

Pairing vs Non-pairing Groups

	Pairing	Non-Pairing
Attribute-Based Encryption	[SW04,GPSW06]	$?$
Identity-Based Encryption	$[B F 01]$	[DG17]
NIZKs	$[$ CHK03,GOS06]	$?^{*}$

Are the gaps inherent?

Pairing vs Non-pairing Groups

	Pairing	Non-Pairing
Attribute-Based Encryption	[SW04,GPSW06]	$?$
Identity-Based Encryption	$[\mathrm{BFO1]}$	[DG17]
NIZKs	$[\mathrm{CHK03}, \mathrm{GOS} 06]$	$?^{*}$

Are the gaps inherent?

* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]

Our Result (1):

Our Result (1):

- NIZK arguments for NP:

Our Result (1):

- NIZK arguments for NP:

	Zero-Knowledge	Soundness	CRS
I	Statistical	Non-adaptive	Random
II	Computational	Adaptive	Random

Our Result (1):

- NIZK arguments for NP:

	Zero-Knowledge	Soundness	CRS
I	Statistical	Non-adaptive	Random
II	Computational	Adaptive	Random

- From sub-exponential DDH in the standard non-pairing groups.

Sub-exponential DDH

- $\exists 0<c<1, \forall$ non-uniform PPT adversary D, \forall sufficiently large λ,
$\left|\operatorname{Pr}\left[D\left(1^{\lambda}, g, g^{a}, g^{b}, g^{a b}\right)=1\right]-\operatorname{Pr}\left[D\left(1^{\lambda}, g, g^{a}, g^{b}, g^{c}\right)=1\right]\right|<2^{-\lambda^{c}}$
$a \leftarrow Z_{p}, b \leftarrow Z_{p}, c \leftarrow Z_{p}$

Our Result (2):
Statistical Zap arguments from sub-exponential DDH, with non-adaptive soundness.

Our Result (2):
Statistical Zap arguments from sub-exponential DDH, with non-adaptive soundness.

Statistical Zaps from group-based assumptions were not known.

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

- Additive reconstruction:

Sender's Side: Laconic Communication

Sender

- Additive reconstruction:

$=F(\vec{x})$

Sender's Side: Laconic Communication

- Laconic communication on sender side
- Additive reconstruction:

$=F(\vec{x})$

Receiver's Side: Function Hiding

Receiver's Side: Function Hiding

Sender

- Function Hiding: F is hiding.
- Laconic communication on sender side
- Additive reconstruction:

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

- Laconic Communication on the Sender's Side: $H_{h k}(\vec{x})$ is small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

- Laconic Communication on the Sender's Side: $H_{h k}(\vec{x})$ is small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender
Receiver

- Function Hiding: $\boldsymbol{e k}(\boldsymbol{F})$ hides \boldsymbol{F}

- Laconic Communication on the Sender's Side: $H_{h k}(\vec{x})$ is small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

Receiver

- Laconic Communication on the Sender's Side: $H_{h k}(\vec{x})$ is small

Trapdoor Hash Functions
Previous Works:

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Applications:

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Applications:

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Applications:

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

Applications:

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions

Previous Works:

- [DGIMMO19] TDH for index predicate \& linear functions from DDH/LWE/QR/DCR
- [BKM20] TDH for constant-degree polynomials from DDH/LWE/QR/DCR

By leveraging the power of interaction, can we handle a larger class of circuits?

Applications:

- Secure computation, rate-1 oblivious transfer, private information retrieval etc. [DGIMMO19]
- Correlation intractable hash and NIZKs [BKM20]

Intermediate Result (1):

$\boldsymbol{O}(\mathbf{1})$-round Interactive TDH for $\mathbf{T C}^{\mathbf{0}}$ from DDH.

Intermediate Result (1):

$\boldsymbol{O}(\mathbf{1})$-round Interactive TDH for $\mathbf{T C}^{\mathbf{0}}$ from DDH.

(TC ${ }^{0}$: constant-depth threshold circuits.)

Intermediate Result (1):

$\boldsymbol{O}(\mathbf{1})$-round Interactive TDH for $\mathbf{T C}^{\mathbf{0}}$ from DDH.

(TC^{0} : constant-depth threshold circuits.)
(Can be generalized to poly-round for $\mathrm{P} /$ poly circuits)

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\vec{x})\right\}_{k}$

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :
\forall fixed $F \in \mathcal{F}$

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(\mathbf{1}^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :
\forall fixed $F \in \mathcal{F}$

PPT. Adversary

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :

$$
\begin{aligned}
& \forall \text { fixed } F \in \mathcal{F} \\
& k \leftarrow \operatorname{Gen}\left(\mathbb{1}^{\lambda}\right)
\end{aligned}
$$

PPT. Adversary

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :

$$
\forall \text { fixed } F \in \mathcal{F}
$$

PPT. Adversary

Correlation Intractable Hash (CIH)

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

- A Family of Hash: $\left\{\boldsymbol{H}_{k}(\overrightarrow{\boldsymbol{x}})\right\}_{k}$
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$

Correlation Intractable for a Circuit Class \mathcal{F} :

$$
\forall \text { fixed } F \in \mathcal{F}
$$

$$
\operatorname{Pr}_{k}\left[H_{k}(\vec{x})=F(\vec{x})\right] \leq \text { negl }
$$

Correlation Intractable Hash (CIH)

Previous Works:

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

- [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
- [BKM20] CIH from TDH for approximate constant-degree polynomials.

Can we build CIH for a larger class of circuits from assumptions other than LWE?

Applications:

- NIZKs [CCHLRRW19,PS19,BKM20]
- SNARGs [CCHLRRW19,JKKZ20]
- Verifiable Delay Functions [LV20],
- PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Intermediate Result (2):
 Correlation Intractable Hash for TC^{0} from sub-exponential DDH.

Intermediate Result (2):

Correlation Intractable Hash for TC^{0} from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we can also obtain CIH for $O(\log \log \lambda)$-depth threshold circuits.

Technical Detail

- Recap of Fiat-Shamir

Technical Detail

- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH
- Recap of Fiat-Shamir

Technical Detail

- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH
- Recap of Fiat-Shamir

Technical Detail

- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH
- Recap of Fiat-Shamir

Technical Detail

- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH
- Recap of Fiat-Shamir

Technical Detail

- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BkM20]

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, сснLRRW19,

 PS19, BkM20]

Special Soundness: A witness can be extracted from two accepting transcripts

$$
\left(\alpha^{*}, \beta_{0}^{*}, \gamma_{0}^{*}\right),\left(\alpha^{*}, \beta_{1}^{*}, \gamma_{1}^{*}\right) \text {, if } \beta_{0}^{*} \neq \beta_{1}^{*} \text {. }
$$

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, сснLRRW19,

 PS19, BkM20]

Special Soundness: A witness can be extracted from two accepting transcripts

$$
\left(\alpha^{*}, \beta_{0}^{*}, \gamma_{0}^{*}\right),\left(\alpha^{*}, \beta_{1}^{*}, \gamma_{1}^{*}\right) \text {, if } \beta_{0}^{*} \neq \beta_{1}^{*} \text {. }
$$

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

 PS19, BKM20]

Special Soundness: A witness can be extracted from two accepting transcripts

$$
\left(\alpha^{*}, \beta_{0}^{*}, \gamma_{0}^{*}\right),\left(\alpha^{*}, \beta_{1}^{*}, \gamma_{1}^{*}\right) \text {, if } \beta_{0}^{*} \neq \beta_{1}^{*} \text {. }
$$

If $x \notin L$, for any α^{*}, \exists unique β^{*} such that (α^{*}, β^{*},) can be accepted.

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM20]

Special Soundness: A witness can be extracted from two accepting transcripts

$$
\left(\alpha^{*}, \beta_{0}^{*}, \gamma_{0}^{*}\right),\left(\alpha^{*}, \beta_{1}^{*}, \gamma_{1}^{*}\right) \text {, if } \beta_{0}^{*} \neq \beta_{1}^{*} \text {. }
$$

If $x \notin L$, for any α^{*}, \exists unique β^{*} such that (α^{*}, β^{*},) can be accepted.

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM20]

Special Soundness: A witness can be extracted from two accepting transcripts

$$
\left(\alpha^{*}, \beta_{0}^{*}, \gamma_{0}^{*}\right),\left(\alpha^{*}, \beta_{1}^{*}, \gamma_{1}^{*}\right) \text {, if } \beta_{0}^{*} \neq \beta_{1}^{*} \text {. }
$$

If $x \notin L$, for any α^{*}, \exists unique β^{*} such that (α^{*}, β^{*},) can be accepted.
BAD: α^{*} \qquad the unique β^{*}

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

BAD: α^{*} the unique β^{*}

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, ссHLRRW19, PS19, BKM20]

BAD: $\alpha^{*} \longrightarrow$ the unique β^{*}
Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=\operatorname{BAD}\left(\alpha^{*}\right)$: Contradiction to Correlation Intractability

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Known constructions of CIH can only handle efficiently computable BAD

BAD: $\alpha^{*} \longrightarrow$ the unique β^{*}

Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=\operatorname{BAD}\left(\alpha^{*}\right)$: Contradiction to Correlation Intractability

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol trapdoor: td

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor $\boldsymbol{\Sigma}$-protocol trapdoor: td

BAD:

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol trapdoor: td

BAD: α^{*}

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol trapdoor: td

BAD: α^{*} Com.Ext(tdl, \cdot)

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor Σ-protocol trapdoor: td

BAD: α^{*} Com.Ext(tdl, $\left.\cdot\right) m^{*}$

Fiat-Shamir: Soundness [cGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Trapdoor $\boldsymbol{\Sigma}$-protocol trapdoor: td

$$
\text { BAD: } \quad \alpha^{*} \operatorname{Com} \cdot \operatorname{Ext}(\mathrm{td}, \cdot) \quad m^{*} \quad \text { the unique bad } \beta^{*}
$$

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]
Trapdoor Σ-protocol trapdoor: td

Correlation Intractability needs to at least capture the Com.Ext(tdl,•) circuit

BAD: $\quad \alpha^{*}$ Com.Ext(tdl, $\left.\cdot\right) m^{*}$ the unique bad β^{*}

Towards Instantiation from DDH:
Main Challenges

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow \mathrm{CIH}$ for TC^{0}
- Construction of ITDH

Instantiate Fiat-Shamir from DDH

Instantiate Fiat-Shamir from DDH

- Instantiate Trapdoor Commitment from DDH

Instantiate Fiat-Shamir from DDH

- Instantiate Trapdoor Commitment from DDH

Commitment \rightarrow ElGamal Encryption
Extraction \rightarrow EIGamal Decryption

Instantiate Fiat-Shamir from DDH

- Instantiate Trapdoor Commitment from DDH

Commitment \rightarrow ElGamal Encryption
Extraction \rightarrow EIGamal Decryption

Instantiate Fiat-Shamir from DDH

- Instantiate Trapdoor Commitment from DDH

Commitment \rightarrow EIGamal Encryption
Extraction \rightarrow EIGamal Decryption

If we have CIH for E/Gamal Decryption circuit from DDH, then we can hope to construct NIZKs from DDH.

Previous CIH from DDH [BKM20]

Previous CIH from DDH [BKM20]

$$
\boldsymbol{H}_{\boldsymbol{k}}(\cdot)
$$

CIH for approximable relations of $O(1)$-degree poly.

Previous CIH from DDH [BKM20]

$$
\boldsymbol{H}_{\boldsymbol{k}}(\cdot)
$$

CIH for approximable relations of $O(1)$-degree poly.

Previous CIH from DDH [BKM20]

TDH for $\boldsymbol{O}(1)$-degree poly.

$$
\boldsymbol{H}_{\boldsymbol{k}}(\cdot)
$$

CIH for approximable relations of $O(1)$-degree poly.

Previous CIH from DDH [BKM20]

TDH for $\boldsymbol{O}(1)$-degree poly.
CIH for approximable relations of $O(1)$-degree poly.

- [BKM20] used trapdoor commitment from LPN, where Com. Extraction(td, $\cdot) \in\{$ approximate $O(1)$-degree poly. $\}$

Previous CIH from DDH [BKM20]

TDH for $\boldsymbol{O}(\mathbf{1})$-degree poly.

CIH for approximable relations of $O(1)$-degree poly.

Approximating the ElGamal Decryption by $\boldsymbol{O}(1)$-degree poly is not known

- [BKM20] used trapdoor commitment from LPN, where Com. Extraction(td,-) $\in\{$ approximate $O(1)$-degree poly. $\}$

What circuit class of CIH is sufficient to instantiate Fiat-Shamir from DDH?

What circuit class of CIH is sufficient to instantiate Fiat-Shamir from DDH?

How to build CIH for such a circuit class?

Our Approach

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

CIH for TC
building NIZKs from DDices for

Construct CIH for TC ${ }^{\mathbf{0}}$

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

CIH for TC
building NIZKs from DDices for

Our Approach

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for $\mathbf{T C}^{\mathbf{0}} \rightarrow$ CIH for $\mathbf{T C} \mathbf{C}^{\mathbf{0}}$
- Construction of ITDH

Recall: Interactive TDH

Recall: Interactive TDH
Sender

Recall: Interactive TDH
Sender
Receiver

Recall: Interactive TDH

Sender

Recall: Interactive TDH

Sender

Receiver

Recall: Interactive TDH

Sender

- Laconic communication on sender side: $|\square| \leq \lambda$
- Additive reconstruction:

Receiver

Recall: Interactive TDH

Sender

Receiver
$\vec{x} \longrightarrow$

- Function Hiding: F is hid
- Laconic communication on sender side:

$$
|\square| \leq \lambda
$$

- Additive reconstruction:

CIH from Interactive TDH

Sender

CIH from Interactive TDH

Sender

CIH from Interactive TDH

Recall: Correlation Intractable for \mathcal{F}

Recall: Correlation Intractable for \mathcal{F}

\forall fixed $F \in \mathcal{F}$

Recall: Correlation Intractable for \mathcal{F}

\forall fixed $F \in \mathcal{F}$

Recall: Correlation Intractable for \mathcal{F}

\forall fixed $F \in \mathcal{F}$

Recall: Correlation Intractable for \mathcal{F}

Recall: Correlation Intractable for \mathcal{F}

\forall fixed $F \in \mathcal{F}$

$$
\operatorname{Pr}_{2}\left[H_{k}(\vec{x})=F(\vec{x})\right] \leq \text { negl }
$$

Proof of Correlation Intractability [BKM20]

Proof of Correlation Intractability [This work]

Sender

Proof of Correlation Intractability [This work]

Sender

Proof of Correlation Intractability [This work]

Sender

Proof of Correlation Intractability [This work]

Proof of Correlation Intractability [This work]

An Oversimplified Case: Guessing is independent of \vec{x}

An Oversimplified Case: Guessing is independent of $\overrightarrow{\boldsymbol{x}}$ $\forall \vec{x} \leftarrow \operatorname{Pr}[$ Guessing \square Correct $]=2^{-o(\lambda)}$,

Equal

An Oversimplified Case: Guessing is independent of $\overrightarrow{\boldsymbol{x}}$

$$
\forall \vec{x} \leftarrow \int \quad \operatorname{Pr}[\text { Guessing } \quad \text { Correct }]=2^{-o(\lambda)}
$$

Equal

$$
\begin{array}{|c}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-\boldsymbol{O}(\lambda)} \\
\text { (Not too small) }
\end{array}
$$

An Oversimplified Case: Guessing is independent of \vec{x}

$$
\forall \vec{x} \leftarrow \sum \quad \operatorname{Pr}[\text { Guessing } \quad \text { Correct }]=2^{-O(\lambda)},
$$

Equal

Sparsity of \vec{d} :

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\Omega(n)} \\
\text { (Very small!) }
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-\boldsymbol{o}(\lambda)} \\
\text { (Not too small) }
\end{gathered}
$$

An Oversimplified Case: Guessing is independent of \vec{x}

$$
\forall \vec{x} \leftarrow \operatorname{Pr}[\text { Guessing } \square \text { Correct }]=2^{-o(\lambda)},
$$

Equal

Sparsity of \vec{d} :

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\Omega(n)} \\
\text { (Very small!) }
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-\boldsymbol{O}(\lambda)} \\
\text { (Not too small) }
\end{gathered}
$$

If $n \gg \lambda$, contradiction!

An Oversimplified Case: Guessing is independent of \vec{x}

$$
\forall \vec{x} \leftarrow \operatorname{Pr}[\text { Guessing } \square \text { Correct }]=2^{-o(\lambda)},
$$

Equal

Sparsity of \vec{d} :

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\Omega(n)} \\
(\text { Very small!) }
\end{gathered} \ll \begin{array}{|c}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-\boldsymbol{o}(\lambda)} \\
\text { (Not too small) }
\end{array}
$$

If $n \gg \lambda$, contradiction!

Is Guessing independent of $\overrightarrow{\boldsymbol{x}}$?

Is Guessing independent of $\overrightarrow{\boldsymbol{x}}$?

$$
\operatorname{Pr}_{k}\left[H_{k}(\vec{x})=F(\vec{x})\right] \leq \text { negl }
$$

Is Guessing independent of $\overrightarrow{\boldsymbol{x}}$?

Is Guessing independent of $\overrightarrow{\boldsymbol{x}}$?

Is Guessing independent of \vec{x} ?

chooses \vec{x} depending on \boldsymbol{k}, which depends on the guessing

Function Hiding: also hides

Function Hiding in Detail

- Function Hiding: $\forall F, \mathbf{s t}_{i}, \operatorname{KGen}\left(F, \mathrm{st}_{i}\right) \approx_{c}$ Uniformly Random String

Leverage Function Hiding

Leverage Function Hiding

Modified proof of Correlation Intractability

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} \ldots<\lambda_{L}
$$

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} \quad \cdots<\lambda_{L}
$$

From Guessing Correctness:

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-O\left(\lambda_{1}+\lambda_{2} \ldots+\lambda_{L}\right)} \\
\text { (Not too small) }
\end{gathered}
$$

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} \quad \cdots<\lambda_{L}
$$

Sparsity of \vec{d} :

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\boldsymbol{\Omega}(n)} \\
\text { (Very small!) }
\end{gathered}
$$

From Guessing Correctness:

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-O\left(\lambda_{1}+\lambda_{2} \ldots+\lambda_{L}\right)} \\
\text { (Not too small) }
\end{gathered}
$$

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} \quad \cdots<\lambda_{L}
$$

Sparsity of \vec{d} :

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\Omega(n)} \\
\text { (Very small!) }
\end{gathered}
$$

From Guessing Correctness:

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \geq 2^{-o\left(\lambda_{1}+\lambda_{2} \ldots+\lambda_{L}\right)} \\
\text { (Not too small) }
\end{gathered}
$$

If $n \gg \lambda$, Correlation Intractable!

Modified proof of Correlation Intractability

- Extend to $\boldsymbol{O}(1)$ rounds (or $\boldsymbol{O}(\log \log \lambda)$-rounds):

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} \quad \cdots<\lambda_{L}
$$

Sparsity of \vec{d} :
From Guessing Correctness:

$$
\begin{gathered}
\operatorname{Pr}_{\vec{u} \leftarrow\{0,1\}^{n}}[\exists \vec{x}: \vec{d}=\vec{u}] \leq 2^{-\boldsymbol{\Omega}(n)} \\
\text { (Very small!) }
\end{gathered} \ll \begin{gathered}
\operatorname{Pr}_{10}[\exists \overrightarrow{\boldsymbol{u}}: \vec{d}=\vec{d}] \geq 2^{-\boldsymbol{O}\left(\lambda_{1}+\lambda_{2} \ldots+\lambda_{L}\right)} \\
\text { (Not too small) }
\end{gathered}
$$

If $n \gg \lambda$, Correlation Intractable!

Interactive TDH for $\mathbf{T C}^{\mathbf{0}}$

- Recap of Fiat-Shamir
- Main Challenges
- ITDH for $\mathrm{TC}^{0} \rightarrow$ CIH for TC^{0}
- Construction of ITDH

Background: Threshold Gates and $\mathbf{T C}^{\mathbf{0}}$

Background: Threshold Gates and $\mathbf{T C}^{\mathbf{0}}$

- Threshold Gate $\left(\vec{x} \in\{0,1\}^{n}\right)$:

$$
\operatorname{Th}^{t}(\vec{x})= \begin{cases}1, & \text { weight }(\vec{x}) \geq t \\ 0, & \text { Otherwise }\end{cases}
$$

Background: Threshold Gates and $\mathbf{T C}^{\mathbf{0}}$

- Threshold Gate ($\vec{x} \in\{0,1\}^{n}$):

$$
\operatorname{Th}^{t}(\vec{x})= \begin{cases}1, & \text { weight }(\vec{x}) \geq t \\ 0, & \text { Otherwise }\end{cases}
$$

- TC^{0} : constant depth circuits consists of $\{\mathrm{NOT}$, Threshold $\}$ gates

Background: Threshold Gates and $\mathbf{T C}^{\mathbf{0}}$

- Threshold Gate ($\vec{x} \in\{0,1\}^{n}$):

$$
\operatorname{Th}^{t}(\vec{x})= \begin{cases}1, & \text { weight }(\vec{x}) \geq t \\ 0, & \text { Otherwise }\end{cases}
$$

- TC^{0} : constant depth circuits consists of \{NOT, Threshold\} gates
- For simplicity, let's only consider the threshold gates.

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for TC ${ }^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

ITDH for $\mathbf{T C}^{\mathbf{0}}$: Layer-by-Layer Computation

Xor-then-Threshold Gate

Xor-then-Threshold $=$ Threshold Gate \circ XOR

Xor-then-Threshold Gate

Xor-then-Threshold $=$ Threshold Gate \circ XOR

$$
\operatorname{Th}_{\vec{y}}^{t}(\vec{x})= \begin{cases}1, & \text { weight }(\vec{x} \oplus \vec{y}) \geq t \\ 0, & \text { Otherwise }\end{cases}
$$

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

- An overview

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

- An overview

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

- An overview

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

- An overview

ITDH for An Xor-then-Threshold Gate From TDH for Linear functions

- An overview

TDH for \geq ? t

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}
weight $(\vec{x} \oplus \vec{y})=\sum_{i} x_{i} \oplus y_{i}$
weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{aligned}
\operatorname{weight}(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} \\
& =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right)
\end{aligned}
$$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{aligned}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} \\
& =\sum_{i}\left(1-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(1-y_{i}\right) \bmod (n+1)
\end{aligned}
$$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} \quad \begin{array}{l}
\text { We extend TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
& =\sum_{i}\left(1-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} & \begin{array}{l}
\text { We extend TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
& =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

- Use TDH for Linear Functions over $\boldsymbol{Z}_{\boldsymbol{n + 1}}$
weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} \quad \begin{array}{l}
\text { We extend TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
& =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

- Use TDH for Linear Functions over $\boldsymbol{Z}_{\boldsymbol{n + 1}}$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} \quad \begin{array}{l}
\begin{array}{l}
\text { We exten TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
\end{array} & =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

- Use TDH for Linear Functions over $\boldsymbol{Z}_{\boldsymbol{n + 1}}$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} & \begin{array}{l}
\text { We extend TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
& =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

- Use TDH for Linear Functions over $\boldsymbol{Z}_{\boldsymbol{n + 1}}$

weight $(\vec{x} \oplus \vec{y})$ as a Linear Function of \vec{x}

$$
\begin{array}{rlr}
\text { weight }(\vec{x} \oplus \vec{y}) & =\sum_{i} x_{i} \oplus y_{i} & \begin{array}{l}
\text { We extend TDH (from DDH) } \\
\text { to linear functions over } Z_{n+1}
\end{array} \\
& =\sum_{i}\left(\mathbf{1}-x_{i}\right) \cdot y_{i}+x_{i} \cdot\left(\mathbf{1}-y_{i}\right) \bmod (n+1)
\end{array}
$$

- Use TDH for Linear Functions over $\boldsymbol{Z}_{\boldsymbol{n + 1}}$

How do we use TDH to compute $(e+d) \bmod (n+1) \geq^{?} t$?

Comparison as a Linear Function

Comparison as a Linear Function

- A simpler case: equality check $e=$? d

Comparison as a Linear Function

- A simpler case: equality check $e=$? d
$e, d \in[0,1, \ldots, n]$: a poly range!

Comparison as a Linear Function

- A simpler case: equality check $e=$? d

$$
e, d \in[0,1, \ldots, n]: \text { a poly range! }
$$

$$
\begin{aligned}
& \\
& e \rightarrow 1_{e}= \\
& d \rightarrow 1_{d}=\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Comparison as a Linear Function

- A simpler case: equality check $e=$? d

$$
e, d \in[0,1, \ldots, n]: \text { a poly range! }
$$

$$
\begin{aligned}
& e \rightarrow 1_{e}= \\
& d \rightarrow 1_{d}=\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array} \\
& (e=? d)=\left\langle 1_{e}, 1_{d}\right\rangle
\end{aligned}
$$

Comparison as a Linear Function

Comparison as a Linear Function

- Comparison: $(e+d) \bmod (n+1) \geq^{?} t$

Comparison as a Linear Function

- Comparison: $(e+d) \bmod (n+1) \geq^{?} t$

$$
\Leftrightarrow \exists^{?} j \geq t:(e+d) \bmod (n+1)=j
$$

Comparison as a Linear Function

- Comparison: $(e+d) \bmod (n+1) \geq^{?} t$

$$
\Leftrightarrow \exists^{?} j \geq t:(e+d) \bmod (n+1)=j
$$

Comparison as a Linear Function

- Comparison: $(e+d) \bmod (n+1) \geq^{?} t$

$$
\Leftrightarrow \exists^{?} j \geq t:(e+d) \bmod (n+1)=j
$$

Equality Check! $\quad e=(j-d) \bmod (n+1)$

Comparison as a Linear Function

- Comparison: $(e+d) \bmod (n+1) \geq^{?} t$

$$
\Leftrightarrow \exists^{?} j \geq t:(e+d) \bmod (n+1)=j
$$

Equality Check! $\quad e=(j-d) \bmod (n+1)$

$$
\Leftrightarrow<1_{e}, \sum_{j \geq t} 1_{(j-d) \bmod (n+1)}>=1
$$

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

ITDH for An Xor-then-Threshold Gate:
 Putting Things Together

Summary of Results

- NIZKs from sub-exponential DDH:

	Zero-Knowledge	Soundness	CRS
I	Statistical	Non-adaptive	Random
II	Computational	Adaptive	Random

- O(1)-round Interactive Trapdoor Hashing Protocol for TC ${ }^{0}$
- Correlation Intractable Hash for TC^{0}.
- Statistical Zap arguments from sub-exponential DDH.

Open Questions

- NIZKs from polynomial-hard DDH?
- NIZKs from public key encryption?
- Correlation intractable hash for P/poly from DDH?

Thank you!
Q \& A

