
Non-Interactive Zero Knowledge

from Sub-exponential DDH

Abhishek Jain Zhengzhong Jin

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

CRS CRS

Setup

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”CRS CRS

Setup

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”CRS CRS

Setup

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”

Accept/Reject

CRS CRS

Setup

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”

Accept/Reject

CRS CRS

Setup

• Completeness: If 𝑥 ∈ 𝐿, verifier accepts the honestly generated proof.

• Soundness: for any 𝑥 ∉ 𝐿, the verifier rejects.

• Zero-Knowledge: the proof reveals nothing beyond 𝑥 ∈ 𝐿.

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”

Accept/Reject

CRS CRS

Setup

• Completeness: If 𝑥 ∈ 𝐿, verifier accepts the honestly generated proof.

• Soundness: for any 𝑥 ∉ 𝐿, the verifier rejects.

• Zero-Knowledge: the proof reveals nothing beyond 𝑥 ∈ 𝐿.

Non-Interactive Zero Knowledge (NIZK)

Prover(𝒙,𝝎) Verifier(𝒙)

“𝑥 ∈ 𝐿”

Accept/Reject

CRS CRS

Setup

• Completeness: If 𝑥 ∈ 𝐿, verifier accepts the honestly generated proof.

• Soundness: for any 𝑥 ∉ 𝐿, the verifier rejects.

• Zero-Knowledge: the proof reveals nothing beyond 𝑥 ∈ 𝐿.

What assumptions are sufficient for NIZKs?

Prior Works

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

• Quadratic Residuosity Assumption (QR) [BFM88]

• Factoring [FLS90]

• Bilinear Maps [CHK03, GOS06, GOS06]

• Learning with Errors (LWE) [CCHLRRW19, PS19]

• Learning Parity with Noise and Trapdoor Hash Function [BKM20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

• NIZKs from discrete-log related assumptions?

Question (1): Do there exist NIZKs from DDH?

Pairing vs Non-pairing Groups

Pairing Non-Pairing

Attribute-Based
Encryption [SW04,GPSW06] ?

Identity-Based
Encryption [BF01] [DG17]

NIZKs [CHK03,GOS06] ?∗

Pairing vs Non-pairing Groups

Are the gaps inherent?

Pairing Non-Pairing

Attribute-Based
Encryption [SW04,GPSW06] ?

Identity-Based
Encryption [BF01] [DG17]

NIZKs [CHK03,GOS06] ?∗

Pairing vs Non-pairing Groups

Are the gaps inherent?

Pairing Non-Pairing

Attribute-Based
Encryption [SW04,GPSW06] ?

Identity-Based
Encryption [BF01] [DG17]

NIZKs [CHK03,GOS06] ?∗

* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]

Our Result (1):

Our Result (1):

• NIZK arguments for NP:

Our Result (1):

Zero-Knowledge Soundness CRS

I Statistical Non-adaptive Random

II Computational Adaptive Random

• NIZK arguments for NP:

Our Result (1):

Zero-Knowledge Soundness CRS

I Statistical Non-adaptive Random

II Computational Adaptive Random

• From sub-exponential DDH in the standard non-pairing groups.

• NIZK arguments for NP:

Sub-exponential DDH

• ∃ 0 < 𝑐 < 1, ∀ non-uniform PPT adversary 𝐷, ∀ sufficiently large 𝜆,

|Pr 𝐷 1𝜆, 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏 = 1 − Pr 𝐷 1𝜆, 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 = 1 | < 𝟐−𝝀
𝒄

𝑎 ← 𝑍𝑝, 𝑏 ← 𝑍𝑝, 𝑐 ← 𝑍𝑝

Our Result (2):

Statistical Zap arguments from sub-exponential DDH,
with non-adaptive soundness.

Our Result (2):

Statistical Zap arguments from sub-exponential DDH,
with non-adaptive soundness.

Statistical Zaps from group-based assumptions

were not known.

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver

encoding decoding

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

encoding decoding

𝒙

…

• Additive reconstruction:

Sender Receiver

Sender’s Side: Laconic Communication

• Laconic communication
on sender side

| | ≤ 𝝀
𝒙

…

• Additive reconstruction:

Sender Receiver

Sender’s Side: Laconic Communication

| | ≤ 𝝀

𝑭
(multi-bit output)

…

• Additive reconstruction:

Sender Receiver

Receiver’s Side: Function Hiding

𝑭
(multi-bit output)

• Function Hiding: 𝐹 is hiding.

…

• Additive reconstruction:

Sender Receiver

Receiver’s Side: Function Hiding

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Receiver

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙

Sender Receiver

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

td

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

td

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

td

𝐻ℎ𝑘(𝒙)

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

td

𝐻ℎ𝑘(𝒙)

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

Ԧ𝑒 Ԧ𝑑

td

𝐻ℎ𝑘(𝒙)

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender Receiver

𝒆𝒌(𝑭)

Ԧ𝑒 Ԧ𝑑
encoding decoding

td

𝐻ℎ𝑘(𝒙)

𝑭

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

= 𝑭(𝒙)

Sender Receiver

𝒆𝒌(𝑭)

Ԧ𝑒 Ԧ𝑑
encoding decoding

⊕

td

𝐻ℎ𝑘(𝒙)

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

Sender

𝒆𝒌(𝑭)

𝐻ℎ𝑘(𝒙)

• Laconic Communication on the Sender’s Side: is small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝒉𝒌

𝐻ℎ𝑘(𝑥)

Sender

𝒆𝒌(𝑭)

𝐻ℎ𝑘(𝒙)

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝑭𝒉𝒌

𝐻ℎ𝑘(𝑥)

Receiver

𝒆𝒌(𝑭)

𝐻ℎ𝑘(𝒙)

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝑭𝒉𝒌

𝐻ℎ𝑘(𝑥)

Receiver

𝒆𝒌(𝑭)

• Function Hiding:
𝒆𝒌(𝑭) hides 𝑭

𝐻ℎ𝑘(𝒙)

• Laconic Communication on the Sender’s Side: is small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

𝒙 𝑭𝒉𝒌

𝐻ℎ𝑘(𝑥)

= 𝑭(𝒙)

Sender Receiver

𝒆𝒌(𝑭)

Ԧ𝑒 Ԧ𝑑
encoding decoding

⊕

• Function Hiding:
𝒆𝒌(𝑭) hides 𝑭 td

𝐻ℎ𝑘(𝒙)

Trapdoor Hash Functions
Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
• Secure computation, rate-1 oblivious transfer,

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
• Secure computation, rate-1 oblivious transfer,

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
• Secure computation, rate-1 oblivious transfer,

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
• Secure computation, rate-1 oblivious transfer,

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

Trapdoor Hash Functions

• [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

• [BKM20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
• Secure computation, rate-1 oblivious transfer,

private information retrieval etc. [DGIMMO19]
• Correlation intractable hash and NIZKs [BKM20]

Previous Works:

By leveraging the power of interaction,
can we handle a larger class of circuits?

Intermediate Result (1):

𝑶(𝟏)-round Interactive TDH
for 𝐓𝐂𝟎 from DDH.

Intermediate Result (1):

𝑶(𝟏)-round Interactive TDH
for 𝐓𝐂𝟎 from DDH.

(TC0: constant-depth threshold circuits.)

Intermediate Result (1):

𝑶(𝟏)-round Interactive TDH
for 𝐓𝐂𝟎 from DDH.

(TC0: constant-depth threshold circuits.)

(Can be generalized to poly-round for P/𝑝𝑜𝑙𝑦 circuits)

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

∀ fixed 𝑭 ∈ 𝓕

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

∀ fixed 𝑭 ∈ 𝓕

PPT. Adversary

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

∀ fixed 𝑭 ∈ 𝓕

PPT. Adversary

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

∀ fixed 𝑭 ∈ 𝓕

PPT. Adversary

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable for a Circuit Class 𝓕:

• Key Generation: 𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

• A Family of Hash: 𝑯𝒌 𝒙 𝒌

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

∀ fixed 𝑭 ∈ 𝓕

PPT. Adversary

Pr
,𝒌
[𝑯𝒌 𝒙 = 𝑭 𝒙] ≤ negl

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

• [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
• [BKM20] CIH from TDH for approximate constant-degree polynomials.

Applications:
• NIZKs [CCHLRRW19,PS19,BKM20]
• SNARGs [CCHLRRW19,JKKZ20]
• Verifiable Delay Functions [LV20],
• PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Previous Works:

Correlation Intractable Hash (CIH)

Can we build CIH for a larger class of circuits from
assumptions other than LWE?

Intermediate Result (2):

Correlation Intractable Hash for TC0

from sub-exponential DDH.

Intermediate Result (2):

Correlation Intractable Hash for TC0

from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we
can also obtain CIH for 𝑂(log log 𝜆)-depth threshold circuits.

Technical Detail

Technical Detail

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Technical Detail

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Technical Detail

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Technical Detail

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Technical Detail

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP

𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP
key 𝑘 for CIH

𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP

Prepare 𝛼

key 𝑘 for CIH
𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP

Prepare 𝛼
𝛽 = 𝑯𝒌(𝛼)

key 𝑘 for CIH
𝑥 ∈ 𝐿

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP

Prepare 𝛼
𝛽 = 𝑯𝒌(𝛼)

key 𝑘 for CIH
𝑥 ∈ 𝐿

Compute 𝛾

Fiat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

VP
𝛼

𝛽 ← 0,1 ∗

𝛾

𝚺-protocol
𝑥 ∈ 𝐿

VP

𝛼, 𝛾

Prepare 𝛼
𝛽 = 𝑯𝒌(𝛼)

key 𝑘 for CIH
𝑥 ∈ 𝐿

Compute 𝛾

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

Special Soundness: A witness can be extracted from two accepting transcripts

𝛼∗, 𝛽0
∗, 𝛾0

∗ , 𝛼∗, 𝛽1
∗, 𝛾1

∗ , if 𝛽0
∗ ≠ 𝛽1

∗.

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

Special Soundness: A witness can be extracted from two accepting transcripts

𝛼∗, 𝛽0
∗, 𝛾0

∗ , 𝛼∗, 𝛽1
∗, 𝛾1

∗ , if 𝛽0
∗ ≠ 𝛽1

∗.

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

Special Soundness: A witness can be extracted from two accepting transcripts

𝛼∗, 𝛽0
∗, 𝛾0

∗ , 𝛼∗, 𝛽1
∗, 𝛾1

∗ , if 𝛽0
∗ ≠ 𝛽1

∗.

If 𝑥 ∉ 𝐿, for any 𝛼∗, ∃ unique 𝛽∗ such that (𝛼∗, 𝛽∗,⋅) can be accepted.

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

Special Soundness: A witness can be extracted from two accepting transcripts

𝛼∗, 𝛽0
∗, 𝛾0

∗ , 𝛼∗, 𝛽1
∗, 𝛾1

∗ , if 𝛽0
∗ ≠ 𝛽1

∗.

If 𝑥 ∉ 𝐿, for any 𝛼∗, ∃ unique 𝛽∗ such that (𝛼∗, 𝛽∗,⋅) can be accepted.

𝛼∗ the unique 𝛽∗

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

Special Soundness: A witness can be extracted from two accepting transcripts

𝛼∗, 𝛽0
∗, 𝛾0

∗ , 𝛼∗, 𝛽1
∗, 𝛾1

∗ , if 𝛽0
∗ ≠ 𝛽1

∗.

If 𝑥 ∉ 𝐿, for any 𝛼∗, ∃ unique 𝛽∗ such that (𝛼∗, 𝛽∗,⋅) can be accepted.

𝛼∗ the unique 𝛽∗𝐁𝐀𝐃:

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

𝛼∗ the unique 𝛽∗𝐁𝐀𝐃:

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

𝛼∗ the unique 𝛽∗𝐁𝐀𝐃:

Verifier accepts ⇒ 𝛽∗ = CIH𝑘 𝛼∗ = 𝐁𝐀𝐃 𝛼∗ : Contradiction to Correlation Intractability

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

𝚺-protocol

V V
CIH key 𝑘

𝛼∗

𝛼∗ the unique 𝛽∗𝐁𝐀𝐃:

Verifier accepts ⇒ 𝛽∗ = CIH𝑘 𝛼∗ = 𝐁𝐀𝐃 𝛼∗ : Contradiction to Correlation Intractability

Known constructions of CIH can only handle
efficiently computable BAD

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

CRS

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

CRS CRS

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

CRS CRS

trapdoor: td

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝐁𝐀𝐃:

CRS CRS

trapdoor: td

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝛼∗𝐁𝐀𝐃:

CRS CRS

trapdoor: td

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝛼∗𝐁𝐀𝐃:

CRS CRS

trapdoor: td

Com.Ext(𝐭𝐝,⋅)

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝛼∗𝐁𝐀𝐃:

CRS CRS

trapdoor: td

Com.Ext(𝐭𝐝,⋅)
𝑚∗

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝛼∗ the unique bad 𝛽∗𝐁𝐀𝐃:

CRS CRS

trapdoor: td

Com.Ext(𝐭𝐝,⋅)
𝑚∗

𝑥 ∉ 𝐿
𝑥 ∉ 𝐿

𝛼∗, 𝛾∗
𝛾∗

𝛽∗

Cheating
Prover

Cheating
Prover

Fiat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

V V
CIH key 𝑘

𝛼∗ = 𝐂𝐨𝐦(𝒎∗)

Trapdoor 𝚺-protocol

𝛼∗ the unique bad 𝛽∗𝐁𝐀𝐃:

CRS CRS

trapdoor: td

Com.Ext(𝐭𝐝,⋅)
𝑚∗

Correlation Intractability needs to at least capture the Com.Ext(𝐭𝐝,⋅) circuit

Towards Instantiation
from DDH:

Main Challenges

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Instantiate Fiat-Shamir from DDH

Instantiate Fiat-Shamir from DDH

• Instantiate Trapdoor Commitment from DDH

Instantiate Fiat-Shamir from DDH

• Instantiate Trapdoor Commitment from DDH

Commitment → ElGamal Encryption
Extraction → ElGamal Decryption

Instantiate Fiat-Shamir from DDH

• Instantiate Trapdoor Commitment from DDH

Commitment → ElGamal Encryption
Extraction → ElGamal Decryption

Instantiate Fiat-Shamir from DDH

If we have CIH for ElGamal Decryption circuit from DDH,
then we can hope to construct NIZKs from DDH.

• Instantiate Trapdoor Commitment from DDH

Commitment → ElGamal Encryption
Extraction → ElGamal Decryption

Previous CIH from DDH [BKM20]

Previous CIH from DDH [BKM20]

𝑯𝒌 ⋅
CIH for approximable relations

of 𝑶(𝟏)-degree poly.

Previous CIH from DDH [BKM20]

𝑯𝒌 ⋅
CIH for approximable relations

of 𝑶(𝟏)-degree poly.

Previous CIH from DDH [BKM20]

TDH for 𝑶(𝟏)-degree poly.

𝑯𝒌 ⋅
CIH for approximable relations

of 𝑶(𝟏)-degree poly.

Previous CIH from DDH [BKM20]

• [BKM20] used trapdoor commitment from LPN, where
Com. Extraction td,⋅ ∈ { approximate 𝑂(1)-degree poly. }

TDH for 𝑶(𝟏)-degree poly.

𝑯𝒌 ⋅
CIH for approximable relations

of 𝑶(𝟏)-degree poly.

Previous CIH from DDH [BKM20]

• [BKM20] used trapdoor commitment from LPN, where
Com. Extraction td,⋅ ∈ { approximate 𝑂(1)-degree poly. }

TDH for 𝑶(𝟏)-degree poly.

𝑯𝒌 ⋅
CIH for approximable relations

of 𝑶(𝟏)-degree poly.

Approximating the ElGamal Decryption by

𝑶(𝟏)-degree poly is not known

What circuit class of CIH is sufficient to
instantiate Fiat-Shamir from DDH?

What circuit class of CIH is sufficient to
instantiate Fiat-Shamir from DDH?

How to build CIH for such a circuit class?

Our Approach

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

Construct CIH for 𝐓𝐂𝟎

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

𝑶(𝟏)-round ITDH for 𝐓𝐂𝟎

…

Construct CIH for 𝐓𝐂𝟎

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

𝑶(𝟏)-round ITDH for 𝐓𝐂𝟎

…

Compute beyond 𝑶(𝟏)-degree poly
by leveraging interaction

Construct CIH for 𝐓𝐂𝟎

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

𝑶(𝟏)-round ITDH for 𝐓𝐂𝟎

…

Compute beyond 𝑶(𝟏)-degree poly
by leveraging interaction

Construct CIH for 𝐓𝐂𝟎

Our Approach

CIH for 𝐓𝐂𝟎 suffices for
building NIZKs from DDH

𝑶(𝟏)-round ITDH for 𝐓𝐂𝟎

… 𝑯𝒌 ⋅

CIH for 𝐓𝐂𝟎

Compute beyond 𝑶(𝟏)-degree poly
by leveraging interaction

Construct CIH for 𝐓𝐂𝟎

Our Approach

𝑶(𝟏)-round ITDH for 𝐓𝐂𝟎

… 𝑯𝒌 ⋅

CIH for 𝐓𝐂𝟎

Compute beyond 𝑶(𝟏)-degree poly
by leveraging interaction

Construct CIH for 𝐓𝐂𝟎

Interactive TDH → CIH

• Recap of Fiat-Shamir

• Main Challenges

• ITDH for 𝐓𝐂𝟎 → CIH for 𝐓𝑪𝟎

• Construction of ITDH

Recall: Interactive TDH

Recall: Interactive TDH
Sender

Recall: Interactive TDH
Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

…

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑

…

Sender Receiver

encoding decoding

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

encoding decoding

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

encoding decoding

| | ≤ 𝝀

• Laconic communication
on sender side:

Recall: Interactive TDH

𝒙 𝑭
(multi-bit output)

Ԧ𝑒 Ԧ𝑑⊕ = 𝑭(𝒙)

…

• Additive reconstruction:

Sender Receiver

• Function Hiding: 𝑭 is hiding.

encoding decoding

| | ≤ 𝝀

• Laconic communication
on sender side:

CIH from Interactive TDH

𝒙 𝑭

…

Sender Receiver

Ԧ𝑒 Ԧ𝑑

CIH from Interactive TDH

𝒙 𝑭

…

Sender Receiver

Ԧ𝑒

CIH from Interactive TDH

𝒙 𝑭

…CIH key: 𝒌 = 𝒖 ← 0,1 𝑛,

Sender Receiver

Ԧ𝑒

CIH from Interactive TDH

𝒙 𝑭

…CIH key: 𝒌 = 𝒖 ← 0,1 𝑛,
Guess

…

Sender Receiver

Ԧ𝑒

CIH from Interactive TDH

𝒙 𝑭

…CIH key: 𝒌 = 𝒖 ← 0,1 𝑛,
Guess

Guess

…

Sender Receiver

Ԧ𝑒

CIH from Interactive TDH

𝒙 𝑭

⊕

…CIH key: 𝒌 = 𝒖 ← 0,1 𝑛,

𝒖𝐻𝒌 𝒙 =

Guess

Guess

…

Sender Receiver

Ԧ𝑒

Recall: Correlation Intractable for 𝓕

Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕

Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙
Pr
,𝒌
[𝑯𝒌 𝒙 = 𝑭 𝒙] ≤ negl

Recall: Correlation Intractable for 𝓕

∀ fixed 𝑭 ∈ 𝓕

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

Sender Receiver

Ԧ𝑒

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

𝑭 𝒙 = ⊕

Sender Receiver

Ԧ𝑒

Ԧ𝑒 Ԧ𝑑

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

𝑭 𝒙 = ⊕

Sender Receiver

Ԧ𝑒

Ԧ𝑒 Ԧ𝑑

Equal =

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

𝑭 𝒙 = ⊕

Sender Receiver

Ԧ𝑒

Ԧ𝑒 Ԧ𝑑

Equal!Equal ==

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

𝑭 𝒙 = ⊕

Since it only depends on

is “sparse”,

Sender Receiver

Ԧ𝑒

Ԧ𝑒 Ԧ𝑑

Ԧ𝑑

Equal!Equal ==

Proof of Correlation Intractability [BKM20]

𝒙 𝑭

⊕ 𝒖𝐻𝒌 𝒙 =

𝑭 𝒙 = ⊕

Since it only depends on

is “sparse”,

Sender Receiver

Ԧ𝑒

Ԧ𝑒 Ԧ𝑑

Ԧ𝑑
Pr

𝒖← 𝟎,𝟏 𝒏
∃𝒙: Ԧ𝑑 = 𝒖 = 𝐧𝐞𝐠𝐥

Equal!Equal ==

Proof of Correlation Intractability [This work]

𝒙 𝑭

Sender Receiver

Proof of Correlation Intractability [This work]

𝒙 𝑭

Guess

Sender Receiver

Proof of Correlation Intractability [This work]

𝒙 𝑭

Guess

Guess

Sender Receiver

Proof of Correlation Intractability [This work]

𝒙 𝑭

Guess

Guess

Sender Receiver

Additive reconstruction correctness
only holds with Pr[Guessing Correct]

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

Proof of Correlation Intractability [This work]

𝒙 𝑭

Guess

Guess

If correctness only holds
with small probability,

how to prove CI?

Sender Receiver

Additive reconstruction correctness
only holds with Pr[Guessing Correct]

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

Equal

An Oversimplified Case: Guessing is independent of 𝒙

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒
Equal!

Equal

An Oversimplified Case: Guessing is independent of 𝒙

∀𝒙 ← Pr[Guessing Correct]= 2−𝑂(𝜆),

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒
Equal!

Equal

An Oversimplified Case: Guessing is independent of 𝒙

∀𝒙 ← Pr[Guessing Correct]= 2−𝑂(𝜆),

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒
Equal!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀)

(Not too small)

Equal

An Oversimplified Case: Guessing is independent of 𝒙

∀𝒙 ← Pr[Guessing Correct]= 2−𝑂(𝜆),

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒
Equal!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀)

(Not too small)

Sparsity of Ԧ𝑑 :

Equal

An Oversimplified Case: Guessing is independent of 𝒙

∀𝒙 ← Pr[Guessing Correct]= 2−𝑂(𝜆),

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒

If 𝑛 ≫ 𝜆, contradiction!

Equal!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀)

(Not too small)

Sparsity of Ԧ𝑑 :

Equal

An Oversimplified Case: Guessing is independent of 𝒙

∀𝒙 ← Pr[Guessing Correct]= 2−𝑂(𝜆),

⊕Ԧ𝑒 Ԧ𝑑𝑭 𝒙 =

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

⊕ 𝒖𝐻𝒌 𝒙 = Ԧ𝑒

If 𝑛 ≫ 𝜆, contradiction!

Equal!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀)

(Not too small)

Sparsity of Ԧ𝑑 :

≪

Is Guessing independent of 𝒙?

Is Guessing independent of 𝒙?

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙
Pr
,𝒌
[𝑯𝒌 𝒙 = 𝑭 𝒙] ≤ negl

Is Guessing independent of 𝒙?

𝑭

…CIH key: 𝒌 = 𝒖,
Guess

Guess
…

ITDH

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙
Pr
,𝒌
[𝑯𝒌 𝒙 = 𝑭 𝒙] ≤ negl

Is Guessing independent of 𝒙?

𝑭

…CIH key: 𝒌 = 𝒖,
Guess

Guess
…

ITDH

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

chooses 𝒙 depending on 𝒌,
which depends on the guessing

Is Guessing independent of 𝒙?

𝑭

…CIH key: 𝒌 = 𝒖,
Guess

Guess
…

ITDH

𝒌 ← 𝐆𝐞𝐧(𝟏𝛌)

𝒙

chooses 𝒙 depending on 𝒌,
which depends on the guessing

Function Hiding: also hides

Function Hiding in Detail

…

Sender Receiver

𝑖th receiver’s
messages

𝑭𝒙

(𝑒1, 𝑒2, … , 𝑒𝑛) (𝑑1, 𝑑2, … , 𝑑𝑛)

Function Hiding in Detail

…

Sender Receiver

𝑖th receiver’s
messages

← KGen(𝐹, 𝐬𝐭𝒊)

𝑭𝒙

(𝑒1, 𝑒2, … , 𝑒𝑛) (𝑑1, 𝑑2, … , 𝑑𝑛)

Function Hiding in Detail

…

Sender Receiver

𝑖th receiver’s
messages

← KGen(𝐹, 𝐬𝐭𝒊)

𝑭𝒙

(𝑒1, 𝑒2, … , 𝑒𝑛) (𝑑1, 𝑑2, … , 𝑑𝑛)

Function Hiding in Detail

…

Sender Receiver

𝑖th receiver’s
messages ≈𝑐

← KGen(𝐹, 𝐬𝐭𝒊)

𝑭𝒙

(𝑒1, 𝑒2, … , 𝑒𝑛) (𝑑1, 𝑑2, … , 𝑑𝑛)

Function Hiding in Detail

…

Sender Receiver

𝑖th receiver’s
messages ≈𝑐

← KGen(𝐹, 𝐬𝐭𝒊) Random

𝑭𝒙

(𝑒1, 𝑒2, … , 𝑒𝑛) (𝑑1, 𝑑2, … , 𝑑𝑛)
• Function Hiding: ∀ 𝐹, 𝐬𝐭𝑖 , KGen 𝐹, st𝑖 ≈𝑐 Uniformly Random String

Leverage Function Hiding

𝒙 𝑭

Sender Receiver

Leverage Function Hiding

𝒙 𝑭

Sender Receiver

𝜆1

Leverage Function Hiding

𝒙 𝑭

Sender Receiver

𝜆2

𝜆1

Leverage Function Hiding

𝒙 𝑭

Guess

Sender Receiver

𝜆2

𝜆1

Leverage Function Hiding

𝒙 𝑭

Guess

Guess

Sender Receiver

𝜆2

𝜆1

• Guess correctly with Pr. 𝟐−𝜆1 − 𝟐−𝝀𝟐
𝒄

(not too small)

Leverage Function Hiding

𝒙 𝑭

Guess

Guess

Sender Receiver

𝜆2

𝜆1

• Guess correctly with Pr. 𝟐−𝜆1 − 𝟐−𝝀𝟐
𝒄

(not too small)

Leverage Function Hiding

𝒙 𝑭

Guess

Guess

Sender Receiver

𝜆2

𝜆1

Uniform Random
Guessing

• Guess correctly with Pr. 𝟐−𝜆1 − 𝟐−𝝀𝟐
𝒄

(not too small)

Leverage Function Hiding

𝒙 𝑭

Guess

Guess

Sender Receiver

𝜆2

𝜆1

Uniform Random
Guessing

Sub-exponential
Function Hiding

Modified proof of Correlation Intractability

Modified proof of Correlation Intractability

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Modified proof of Correlation Intractability

𝝀𝟐𝝀𝟏 𝜆3 𝜆𝐿< < … <

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀𝟏+𝝀𝟐…+𝝀𝑳)

(Not too small)

Modified proof of Correlation Intractability

From Guessing Correctness:

𝝀𝟐𝝀𝟏 𝜆3 𝜆𝐿< < … <

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀𝟏+𝝀𝟐…+𝝀𝑳)

(Not too small)

Sparsity of Ԧ𝑑 :

Modified proof of Correlation Intractability

From Guessing Correctness:

𝝀𝟐𝝀𝟏 𝜆3 𝜆𝐿< < … <

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

If 𝑛 ≫ 𝜆, Correlation Intractable!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀𝟏+𝝀𝟐…+𝝀𝑳)

(Not too small)

Sparsity of Ԧ𝑑 :

Modified proof of Correlation Intractability

From Guessing Correctness:

𝝀𝟐𝝀𝟏 𝜆3 𝜆𝐿< < … <

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≤ 2−𝛀(𝒏)

(Very small!)

If 𝑛 ≫ 𝜆, Correlation Intractable!

Pr
𝒖← 𝟎,𝟏 𝒏

∃𝒙: Ԧ𝑑 = 𝒖 ≥ 2−𝑶(𝝀𝟏+𝝀𝟐…+𝝀𝑳)

(Not too small)

Sparsity of Ԧ𝑑 :

≪

Modified proof of Correlation Intractability

From Guessing Correctness:

𝝀𝟐𝝀𝟏 𝜆3 𝜆𝐿< < … <

• Extend to 𝑶(𝟏) rounds (or 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝝀)-rounds):

Interactive TDH for 𝐓𝐂𝟎
• Recap of Fiat-Shamir

• Main Challenges

• ITDH for TC0 → CIH for TC0

• Construction of ITDH

Background: Threshold Gates and 𝐓𝐂𝟎

Background: Threshold Gates and 𝐓𝐂𝟎

• Threshold Gate (𝒙 ∈ 0,1 𝒏):

1, weight Ԧ𝑥 ≥ 𝑡

0, Otherwise
Th𝑡 𝒙 =

Background: Threshold Gates and 𝐓𝐂𝟎

• Threshold Gate (𝒙 ∈ 0,1 𝒏):

1, weight Ԧ𝑥 ≥ 𝑡

0, Otherwise
Th𝑡 𝒙 =

• TC0: constant depth circuits consists of {NOT, Threshold} gates

Background: Threshold Gates and 𝐓𝐂𝟎

• Threshold Gate (𝒙 ∈ 0,1 𝒏):

1, weight Ԧ𝑥 ≥ 𝑡

0, Otherwise
Th𝑡 𝒙 =

• TC0: constant depth circuits consists of {NOT, Threshold} gates

• For simplicity, let’s only consider the threshold gates.

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙 1st Layer of
Threshold Gates of 𝑭

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙 1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙 1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙 1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

2nd Layer of
Threshold Gates of 𝑭

1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

…

2nd Layer of
Threshold Gates of 𝑭

1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

…

2nd Layer of
Threshold Gates of 𝑭

1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

…

2nd Layer of
Threshold Gates of 𝑭

1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

Ԧ𝑒 Ԧ𝑑 =⊕
Output of 1st layer of

Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

…

2nd Layer of
Threshold Gates of 𝑭

1st Layer of
Threshold Gates of 𝑭

ITDH for 1st layer of
Threshold Gates

ITDH for 2nd layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

Ԧ𝑒 Ԧ𝑑 =⊕
Output of 1st layer of

Threshold Gates

???

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙 1st Layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

ITDH for 1st layer
Threshold Gates

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

Xor-then-Threshold
Gates for 2nd layer

1st Layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

ITDH for 1st layer
Threshold Gates

ITDH for 2nd layer Xor-
then-Threshold Gates

Ԧ𝑒

ITDH for 𝐓𝐂𝟎: Layer-by-Layer Computation

𝒙

…

Xor-then-Threshold
Gates for 2nd layer

1st Layer of
Threshold Gates

Ԧ𝑒 Ԧ𝑑

ITDH for 1st layer
Threshold Gates

ITDH for 2nd layer Xor-
then-Threshold Gates

Ԧ𝑒

Xor-then-Threshold Gate

Xor-then-Threshold = Threshold Gate ∘ XOR

Xor-then-Threshold Gate

1, weight Ԧ𝑥 ⊕ 𝒚 ≥ 𝑡

0, Otherwise
Th𝑦

𝑡 𝒙 =

Xor-then-Threshold = Threshold Gate ∘ XOR

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

• An overview

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

𝒙 weight(⋅ ⊕ 𝒚)

• An overview

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

𝒙 weight(⋅ ⊕ 𝒚)
TDH for weight(Ԧ𝑥 ⊕ 𝒚)

• An overview

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

𝒙 weight(⋅ ⊕ 𝒚)
TDH for weight(Ԧ𝑥 ⊕ 𝒚)

• An overview

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

𝒙 weight(⋅ ⊕ 𝒚)
TDH for weight(Ԧ𝑥 ⊕ 𝒚)

TDH for ≥? 𝑡

• An overview

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊)

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊) mod (𝑛 + 1)

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊) mod (𝑛 + 1)

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊) mod (𝑛 + 1)

• Use TDH for Linear Functions over 𝒁𝒏+𝟏

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊)

𝒙 weight(⋅ ⊕ 𝒚)

mod (𝑛 + 1)

• Use TDH for Linear Functions over 𝒁𝒏+𝟏

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊)

𝒙 weight(⋅ ⊕ 𝒚)
TDH for linear functions

over 𝒁𝒏+𝟏

mod (𝑛 + 1)

• Use TDH for Linear Functions over 𝒁𝒏+𝟏

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊)

𝒙 weight(⋅ ⊕ 𝒚)
TDH for linear functions

over 𝒁𝒏+𝟏

mod (𝑛 + 1)

𝑒 𝑑

• Use TDH for Linear Functions over 𝒁𝒏+𝟏

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

weight(𝒙⊕ 𝒚) as a Linear Function of 𝒙

weight(𝒙⊕ 𝒚) =

𝒊

𝒙𝒊 ⊕𝒚𝒊

=

𝒊

𝟏 − 𝒙𝒊 ⋅ 𝒚𝒊 + 𝒙𝒊 ⋅ (𝟏 − 𝒚𝒊)

𝒙 weight(⋅ ⊕ 𝒚)
TDH for linear functions

over 𝒁𝒏+𝟏

mod (𝑛 + 1)

𝑒 𝑑

How do we use TDH to compute 𝒆 + 𝒅 mod 𝑛 + 1 ≥? 𝒕 ?

• Use TDH for Linear Functions over 𝒁𝒏+𝟏

We extend TDH (from DDH)
to linear functions over 𝒁𝒏+𝟏

Comparison as a Linear Function

Comparison as a Linear Function

• A simpler case: equality check 𝑒 =? 𝑑

Comparison as a Linear Function

• A simpler case: equality check 𝑒 =? 𝑑

𝑒, 𝑑 ∈ [0, 1, … , 𝑛]: a poly range!

Comparison as a Linear Function

• A simpler case: equality check 𝑒 =? 𝑑

0 0 1 0 0 0𝑒 → 1𝑒 =

𝑑 → 1𝑑 = 0 0 0 1 0 0

0 1 … n

𝑒, 𝑑 ∈ [0, 1, … , 𝑛]: a poly range!

Comparison as a Linear Function

• A simpler case: equality check 𝑒 =? 𝑑

0 0 1 0 0 0𝑒 → 1𝑒 =

𝑑 → 1𝑑 = 0 0 0 1 0 0

0 1 … n

(𝑒 =? 𝑑) = < 1𝑒 , 1𝑑 >

𝑒, 𝑑 ∈ [0, 1, … , 𝑛]: a poly range!

Comparison as a Linear Function

Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

⇔ ∃? 𝑗 ≥ 𝑡 ∶ 𝑒 + 𝑑 mod 𝑛 + 1 = 𝑗

Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

⇔ ∃? 𝑗 ≥ 𝑡 ∶ 𝑒 + 𝑑 mod 𝑛 + 1 = 𝑗

Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

⇔ ∃? 𝑗 ≥ 𝑡 ∶ 𝑒 + 𝑑 mod 𝑛 + 1 = 𝑗

𝑒 = 𝑗 − 𝑑 mod 𝑛 + 1Equality Check!

Comparison as a Linear Function

• Comparison: 𝑒 + 𝑑 mod 𝑛 + 1 ≥? 𝑡

⇔< 1𝑒 ,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >= 1

⇔ ∃? 𝑗 ≥ 𝑡 ∶ 𝑒 + 𝑑 mod 𝑛 + 1 = 𝑗

𝑒 = 𝑗 − 𝑑 mod 𝑛 + 1Equality Check!

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

1𝒆 <⋅,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

1𝒆

𝑒′ 𝑑′

<⋅,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

1𝒆

𝑒′ 𝑑′⊕ = weight(𝒙 ⊕ 𝒚) ≥? 𝑡

<⋅,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

𝒙 weight(⋅ ⊕ 𝒚)

𝑒 𝑑

1𝒆

𝑒′ 𝑑′⊕ = weight(𝒙 ⊕ 𝒚) ≥? 𝑡

<⋅,

𝑗≥𝑡

1 𝑗−𝑑 mod (𝑛+1) >

Intermediate
Processing by Sender

Nonlinear

Intermediate
Processing by Receiver

Summary of Results

• NIZKs from sub-exponential DDH:

Zero-Knowledge Soundness CRS

I Statistical Non-adaptive Random

II Computational Adaptive Random

• Statistical Zap arguments from sub-exponential DDH.

• 𝑂(1)-round Interactive Trapdoor Hashing Protocol for TC0

• Correlation Intractable Hash for TC0.

Open Questions

• NIZKs from polynomial-hard DDH?

• NIZKs from public key encryption?

• Correlation intractable hash for P/poly from DDH?

Thank you!

Q & A

