
Block Edit Errors with Transpositions:

Deterministic Document Exchange Protocols

and Almost Optimal Binary Codes

Kuan Cheng, Zhengzhong Jin, Xin Li, Ke Wu

Document Exchange Protocol

Alice

𝐷(𝑥, 𝑦) ≤ 𝑘

𝑥 = Recover 𝑠𝑘, 𝑦

Bob

𝑦 ∈ 0, 1 𝑛′

𝑠𝑘

Sketch

𝑠𝑘

𝑥 ∈ 0, 1 𝑛

Minimize Sketch Size

𝑐

Error Correcting Code

𝐷(𝑐, 𝑐′) ≤ 𝑘

𝑥′ ∈ 0, 1 𝑛

𝐄𝐧𝐜

𝑐′

𝑥′

𝐃𝐞𝐜• Minimize Redundancy = 𝑐 − 𝑥′

or

• Maximize Information Rate = 𝑥′ /|𝑐|

Background

Block Edit Errors with Transpositions

0 1 1 0 1 1 0 0 1 0 0 1 0 1 0

1. Burst of Insertion/Deletion

2. Block Transposition

• 𝑘 : the total number of insertions, deletions, and transpositions
• 𝑡 : the total number of bits inserted and deleted

0 1 1 0 1

We focus on binary alphabet.

0 1 1 0 1 1 0 0 1 0 0 1 0 1 0

• A strict generalization of edit error
• 1 block transposition may cause a lot

of edit errors

Applications & Related Problems

• Applications:
• Document Exchange: file synchronization, etc.
• Error Correcting Code: protect data from corruptions.

• Related problems:
• Metric embeddings: Edit distance, Ulam distance, etc.
• Approximating Edit distance (with transpositions)

• Document Exchange
• For Edit Errors:

Exponential time protocol 𝑂(𝑘 log
𝑛

𝑘
) (asymptotically optimal) [Orlitsky 91]

Randomized Protocols 𝑂(𝑘 log2 𝑛) [Irmak, Mihaylov, Suel 05]
𝑂(𝑘(log2𝑘 + log 𝑛)) [Belazzougui, Zhang 17]

𝑂(𝑘 log
𝑛

𝑘
) (asymptotically optimal) [Haeupler 18]

Deterministic Protocols 𝑂(𝑘2 + 𝑘 log2 𝑛) [Belazzougui 15]

𝑂(𝑘 log2(
𝑛

𝑘
)) [Cheng,Jin,Li,Wu 18][Haeupler 18]

• For Edit Errors with Transpositions:
Randomized Protocols 𝑂(𝑘 log2 𝑛) [Irmak, Mihaylov, Suel 05]
Deterministic Protocol: Not known before

Previous Results

Previous Results
• Error Correcting Code

• For Edit Errors:
Asymptotically Good Code [Schulman, Zuckerman 97]

In terms of rate : 1 − ෨𝑂(𝑘/𝑛) [Guruswami, Li 16] [Guruswami, Wang 17]

[Haeupler and Shahrasbi 18]

1 − ෨𝑂(𝑘 / 𝑛) [Cheng, Jin, Li, Wu 18][Haeupler 18]
Small error regime, in terms of redundancy:

𝑂(𝑘2 log 𝑘 log 𝑛) for 𝑘 = 𝑂 1 [Brakensiek, Guruswami, Zbarsky 17]
𝑂 𝑘 log 𝑛 [Cheng, Jin, Li, Wu 18]

• For Edit Errors with Transpositions :
Asymptotically Good Code [Schulman, Zuckerman 97]

Our Results

• Document Exchange

Explicit deterministic protocol, sketch size 𝑂 𝑘 log 𝑛 + 𝑡 log2
𝑛

𝑘 log 𝑛+𝑡

• Error Correcting Code

Explicit construction with redundancy 𝑂(𝑘 log 𝑛 log log log 𝑛 + 𝑡)

• Information Theoretic Optimum : 𝑂(𝑘 log 𝑛 + 𝑡)

Document Exchange Protocol: Overview
(Adapt from FOCS18)

1011000 … 𝑥

…

Alice: 𝑂(log 𝑛) levels. In each level,

divide each block evenly into 2.

Hash each block with random function

Send 𝑠𝑘 hash value , hash function

110100 … 𝑦

𝑥′ (Bob’s version of 𝑥)
Bob: 𝑂(log 𝑛) levels, in each level,
1. Recover hash values from sk
2. Use hashes to find maximum matching

… …
ℎ

101
𝑣𝑖

…

Hash Functions: Derandomization & Matching

• Question: How does Bob find a
maximum non-overlapping,
(possibly) non-monotone matching?

• Exact solution? Seams Hard 

• Approximation? √☺

𝑥

𝑥

ℎ

𝑣

• Collison Free Hash Functions

For any two substrings of 𝑥:

≠ , ℎ ≠ ℎ().AB

A

B

• Derandomization:
Almost k-wise independence (seed length 𝑂(log 𝑛))

B

A

𝑦

𝑥
ℎ

𝑫

𝑪

𝑣

𝐶 and 𝐷 are matched iff ℎ 𝐶 = ℎ(𝐷)

Bob’s Matching Algorithm (Approximation)

• First Attempt A Greedy Matching Algorithm
For each unmatched block, match it to the block (non-overlapping with
existing matchings) with the same hash value, until cannot do this any more.

𝑦

𝑥
ℎ

• < 2/3 fraction of new matches may still be incorrect.
• 2/3 is not enough, since each level we divide each block into 2, we need <1/2.

ℎ

Bob’s Matching Algorithm (Approximation)

Approximating Matching

Idea: Allow some overlapping to approximate the optimal matching

Apply Greedy Matching 3 times to unmatched blocks in 𝑥′, reuse 𝑦.

𝑦

𝑥′
ℎ ℎ ℎ ℎ

• Some matched blocks in 𝑦 may be overlapped for 𝑂 1 times.

Error Correcting Code

Enc′()Enc 𝑥′ ≝ 𝑥′ 𝑠𝑘 𝑥′||

Asymptotically Good Code
for Edit Errors [Schulman

and Zuckerman 97]

Enc′()Enc 𝑥′ ≝

=

𝑥′

PRG(𝑟)

⊕

𝑥 𝑠𝑘 𝑥 𝑟||

𝐵-distinct
Property

• A Better Approach with Smaller Sketch: (adapt from FOCS’18)

• Initial Idea:

Document Exchange of 𝐵-distinct String
• 𝐵-distinct string: every pair of substrings of length 𝐵 are different

length 𝐵 = 𝛩(log 𝑛)

• Key Idea : The content of the 𝐵-substrings serves as a kind of `index’.

• Stage I : Partition the string based on its content

Send a sketch of the partition.

• Stage II : Apply the multi-level doc-exchange.

Partition 𝐵-distinct String

• The partition must based on `local’ content of the string.

• [Cormode, Muthukrishnan 07] : Edit Sensitive Parsing Tree

Figure copied from [Cormode, Muthukrishnan 07]

• Only partially construct the parsing tree
• Each tree is a block.

Partial Parsing Tree

A B C D E

Finished Node

Frozen Node

Active Node

Finished Node: size
≥ a threshold 𝑇

Frozen Node:
neighbors are all

`finished’.

CA D E

A B C D E

Observation

⋯ ⋯

⋯⋯⋯

’

Two-Stage Partition

A burst of errors

𝑇 = log 𝑛

𝑇 = log log 𝑛

Future Direction

• How to explicitly construct optimal document exchange

protocols and error correcting codes for block edit errors &

transpositions?

Thank you!

Ευχαριστώ

