Block Edit Errors with Transpositions:
Deterministic Document Exchange Protocols
and Almost Optimal Binary Codes

Kuan Cheng, Zhengzhong Jin, Xin Li, Ke Wu

JOHNS HOPKINS

UNIVERSITY

Document Exchange Protocol

o

x € {0,1}" D(x,y) <k y €1{0,1}™
Sketch
sk | sk > x = Recover(sk,y)
H_J

Minimize Sketch Size

Error Correcting Code

Enc
D(c,c’) <k
c > c
Minimize Redundancy = [c| — |x’| Dec

or
Maximize Information Rate = |x'|/|c]|

Background

Block Edit Errors with Transpositions

1. Burst of Insertion/Deletion 8 11 Oi_Q
. . Y
2. Block Transposition 011001 001)010

* k :the total number of insertions, deletions, and transpositions
* t:the total number of bits inserted and deleted

* A strict generalization of edit error
011 011001001010 * 1 block transposition may cause a lot

of edit errors

We focus on binary alphabet.

Applications & Related Problems

* Applications:
* Document Exchange: file synchronization, etc.
* Error Correcting Code: protect data from corruptions.

* Related problems:
* Metric embeddings: Edit distance, Ulam distance, etc.
* Approximating Edit distance (with transpositions)

Previous Results

* Document Exchange
* For Edit Errors:

Exponential time protocol O(k log%) (asymptotically optimal) [Orlitsky 91]

Randomized Protocols 0 (k log? n) [Irmak, Mihaylov, Suel 05]
0(k(log?k + logn)) [Belazzougui, Zhang 17]
O(k log%) (asymptotically optimal) [Haeupler 18]

Deterministic Protocols 0(k? + k log? n) [Belazzougui 15]
0(k logz(%)) [Cheng,Jin,Li,Wu 18][Haeupler 18]
* For Edit Errors with Transpositions:
Randomized Protocols 0 (k log? n) [Irmak, Mihaylov, Suel 05]

Deterministic Protocol: Not known before

Previous Results

* Error Correcting Code
* For Edit Errors:
Asymptotically Good Code 'Schulman, Zuckerman 97]

In terms of rate : 1 — 5@/7/11) Guruswami, Li 16] [Guruswami, Wang 17]
[Haeupler and Shahrasbi 18]
1—-0(k/n) ‘Cheng, Jin, Li, Wu 18][Haeupler 18]
Small error regime, in terms of redundancy:
0(k?logklogn) for k = 0(1) [Brakensiek, Guruswami, Zbarsky 17]
O(k logn) [Cheng, Jin, Li, Wu 18]

* For Edit Errors with Transpositions :

Asymptotically Good Code [Schulman, Zuckerman 97]

Our Results

* Document Exchange

klog n+t

Explicit deterministic protocol, sketch size O ((k logn + t) log? —=)

* Error Correcting Code
Explicit construction with redundancy O(k log nlogloglogn + t)

* Information Theoretic Optimum : O(k logn + t)

Document Exchange Protocol: Overview
(Adapt from FOCS18)

23 1011000 - Alice: O(logn) levels. In each level,

divide each block evenly into 2.

_ _ Hash each block with random function
N - - Send sk(hash value), hash function

x' (Bob's version of x) R |
101 Bob: O(logn) levels, in each level,

” 1. Recover hash values from sk
‘ 2. Use hashes to find maximum matching

Hash Functions: Derandomization & Matching
h

 (Collison Free Hash Functions
For any two substrings of x:

- IEN. XD - IR

* Derandomization:
Almost k-wise independence (seed length O(logn))

Question: How does Bob find a
maximum non-overlapping,
(possibly) non-monotone matching?

Fxact solution? Seams Hard ® y
Approximation? v ©

X

X

X

C and D are matched iff h(C) = h(D)

Bob's Matching Algorithm (Approximation)

* First Attempt A Greedy Matching Algorithm

For each unmatched block, match it to the block (non-overlapping with
existing matchings) with the same hash value, until cannot do this any more.

h h

y

e < 2/3 fraction of new matches may still be /ncorrect
e 2/31s not enough, since each level we divide each block into 2, we need <1/2.

Bob's Matching Algorithm (Approximation)

Approximating Matching

Idea: Allow some overlapping to approximate the optimal matching
Apply Greedy Matching 3 times to unmatched blocks in x’, reuse y.

1 B B
T~ NN |

y | |

« Some matched blocks in y may be overlapped for 0(1) times.

Error Correcting Code

* |nitial Idea:

Asymptotically Good Code
for Edit Errors [Schulman
and Zuckerman 97]

-~

Enc(x') &

X

!

‘ ‘ Enc'(

sk(x')

* A Better Approach with Smaller Sketch: (adapt from FOCS'18)

B-distinct
Property

sk(x)|| r

Document Exchange of B-distinct String

* B-distinct string: every pair of substrings of length B are ditferent

\. J
Y

length B = @ (logn)

* Key Idea : The content of the B-substrings serves as a kind of 'index’.
* Stage | : Partition the string based on Its content

Send a sketch of the partition.

* Stage Il : Apply the multi-level doc-exchange.

Partition B-distinct String

* The partition must based on local’ content of the string.
* [Cormode, Muthukrishnan 07] : Edit Sensitive Parsing Tree

AP AN
C TS HEY

Figure copied from [Cormode, Muthukrishnan 07]

* Only partially construct the parsing tree
* Each tree Is a block.

Partial Parsing Tree

Finished Node: size

Frozen Node:

neighbors are all
finished’.

> a threshold T A [C D] E
Active Node / \ ‘ ‘ ‘
A B C D E
Finished Node // \\ / \\ \ r7/ \\ \[74%
A B D E

J

Frozen Node

Observation Each node depends on its

children’s nelghbors/
the errors would

spread too wide. / ’ / \ / \
// N

® N

If the tree is too high,

Two-Stage Partition

T =loglogn 1

Errors from different tree levels are

automaticalli collected to the same level

1

T =logn

N— 7
~

A burst of errors

Future Direction

* How to explicitly construct optimal document exchange
protocols and error correcting codes for block edit errors &

transpositions?

Thank you!

FuxapPLOTW

