Statistical Zaps and New **Oblivious Transfer Protocols**

Vipul Goyal

1

Abhishek Jain

Zhengzhong Jin Giulio Malavolta

Carnegie Mellon University

Johns Hopkins University

Johns Hopkins University

Carnegie Mellon University University of California, Berkeley

Statistical Security in 2-party Protocols

Statistical Security in 2-party Protocols

- Everlasting security Computational unbounded adversary can't break.
- Hard to achieve
 - Impossible for *both* parties to achieve for general functionalities
- Focus of this work: One-side Statistical Security
 - Interactive Proof Systems: Statistical Privacy for Prover
 - <u>Oblivious Transfer</u>: Statistical Privacy for Receiver

Statistical Security in 2-party Protocols

- Everlasting security Computational unbounded adversary can't break.
- Hard to achieve
 - Impossible for *both* parties to achieve for general functionalities
- Focus of this work: One-side Statistical Security
 - Interactive Proof Systems: Statistical Privacy for Prover
 - <u>Oblivious Transfer</u>: Statistical Privacy for Receiver

Interactive Proof System

Interactive Proof System

Interactive Proof System

Witness Indistinguishability (WI)

Witness Indistinguishability (WI)

• Unlike zero-knowledge, WI can be achieved in 2-round

 $x \in L$

Public Coin: Verifier only uses public random coins

Public Coin: Verifier only uses public random coins

Many Applications:

- Round-efficient secure multiparty computation [HHPV18]
- Resettable-secure protocols [DGS09]

.

5

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

- [BP15] Zaps from Indistinguishability Obfuscation
- Above works are *computational* Zap proofs

[DN00] Zaps and NIZK proofs in common random string model are equivalent.

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

- [BP15] Zaps from Indistinguishability Obfuscation
- Above works are *computational* Zap proofs

Question (1): Does there exist statistical Zaps?

Question (1): Does there exist statistical Zaps?

Result (1): Statistical Zaps from quasi-poly hard Learning with Errors **Question (1): Does there exist statistical Zaps?**

Result (1): Statistical Zaps from quasi-poly hard Learning with Errors

[KKS18] achieves statistical *private-coin* WI.

m_0	m_1
-------	-------

m_0	m_1
-------	-------

m_0	m_1
-------	-------

Natural Question

Natural Question

Can we construct **2-round statistical receiver-private** OT?

Natural Question

Can we construct **2-round statistical receiver-private** OT? Impossible!

Natural Question

Can we construct **2-round statistical receiver-private** OT? Impossible!

Natural Question

Can we construct **2-round statistical receiver-private** OT? Impossible!

$$ot_1 \approx OT_1(\beta = 0; r_0)$$
$$\approx OT_1(\beta = 1; r_1)$$

Non-uniform Malicious Receiver
Natural Question

2-round statistical sender-private OT in plain model [NP01, AIR01, Kal05, HK12, BD18]

Can we construct **2-round statistical receiver-private** OT? Impossible!

Natural Question

2-round statistical sender-private OT in plain model [NP01, AIR01, Kal05, HK12, BD18]

Can we construct **2-round statistical receiver-private** OT? Impossible!

Sender

$$ot_1 \stackrel{<}{=} OT_1(\beta = 0; r_0)$$

 $ot_1 \stackrel{<}{=} OT_1(\beta = 1; r_1)$
 $(m_0 \ m_1)$
 $(m_0 \ m_1)$
 $(m_0 \ m_1)$
 $(m_0 \ m_1)$
 $(m_0 \ m_1)$

Natural Question

2-round statistical sender-private OT in plain model [NP01, AIR01, Kal05, HK12, BD18]

Can we construct **2-round statistical receiver-private** OT? Impossible!

Sender

$$ot_1 \stackrel{<}{=} OT_1(\beta = 0; r_0)$$

 $ot_1 \stackrel{<}{=} OT_1(\beta = 1; r_1)$
 $m_0 m_1$
 $m_0 m_1$
 $m_0 m_1$
 $m_0 m_1$

• [KKS18] 3-round protocol from *super-poly* hardness assumptions

Question (2): Based on *polynomial hardness* assumptions, does there exist 3-round statistical receiver-private OT in the plain model? Question (2): Based on *polynomial hardness* assumptions, does there exist 3-round statistical receiver-private OT in the plain model?

Result (2): 3-round statistical receiver-private OT from poly-hardness Construction (1): 2-round statistical sender-private OT Construction (2): Computational Diffie-Hellman assumption Question (2): Based on *polynomial hardness* assumptions, does there exist 3-round statistical receiver-private OT in the plain model?

Result (2): 3-round statistical receiver-private OT from poly-hardness Construction (1): 2-round statistical sender-private OT OT reversal Construction (2): Computational Diffie-Hellman assumption

Technical Details Part I: Statistical Zaps

Statistical Zaps

Correlation Intractable Hash (CIH)

A CIH is a hash function $\{H_k(\cdot)\}_k$:

 $\forall C$, let $k \leftarrow \{0,1\}^{\text{poly}(\lambda)}$, it's hard to find an x, such that

Idea for Security

Idea for Security

• WI: follows from *hiding property* of the commitment

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable Verifier accepts $\Rightarrow \beta^* = \operatorname{CIH}_k(\alpha^*) = C(\alpha^*)$
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable Verifier accepts $\Rightarrow \beta^* = \operatorname{CIH}_k(\alpha^*) = C(\alpha^*)$
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable Verifier accepts $\Rightarrow \beta^* = \text{CIH}_k(\alpha^*) = C(\alpha^*)$
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

 $\beta^* = C(\alpha^*)$

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable Verifier accepts $\Rightarrow \beta^* = \operatorname{CIH}_k(\alpha^*) = C(\alpha^*)$
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

 $\beta^* = C(\alpha^*)$

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable Verifier accepts $\Rightarrow \beta^* = \operatorname{CIH}_k(\alpha^*) = C(\alpha^*)$
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable $\beta^* = C(\alpha^*)$ Verifier accepts $\Rightarrow \beta^* = \text{CIH}_k(\alpha^*) = C(\alpha^*)$ Contradicts CIH!
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable $\beta^* = C(\alpha^*)$ Verifier accepts $\Rightarrow \beta^* = \text{CIH}_k(\alpha^*) = C(\alpha^*)$ Contradicts CIH!
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Soundness: <u>Extract</u> m^* from α^* using a trapdoor Given m^* , the (only) accepting β^* is efficiently computable $\beta^* = C(\alpha^*)$ Verifier accepts $\Rightarrow \beta^* = \text{CIH}_k(\alpha^*) = C(\alpha^*)$ Contradicts CIH!
- Hiding & Extractable commitments can be built in CRS model
 ⇒ Zaps in CRS model

- Statistical WI with err $\approx 1/2$ (when $b \neq b'$)
- Computational Soundness

- Statistical WI with err $\approx 1/2$ (when $b \neq b'$)
- Computational Soundness

- Statistical WI with err $\approx 1/2$ (when $b \neq b'$)
- Computational Soundness

• Can be abstracted as a 2-round statistical hiding extractable commitment [KKS18]

- Statistical WI with err $\approx 1/2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_1 is pseudorandom

- Statistical WI with err $\approx 1/2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_1 is pseudorandom

- Statistical WI with err $\approx 1/2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_1 is pseudorandom

- Statistical WI with err $\approx 1/2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_1 is pseudorandom

Statistical Zaps

20

Technical Details Part II: Oblivious Transfer (OT)

Technical Details Part II: Oblivious Transfer (OT)

Technical Details Part II: Oblivious Transfer (OT)

Statistical Receiver-Private OT

Statistical Receiver-Private OT

Statistical Receiver-Privacy: β is statistical hidden

Main Tool: Statistical Hash Commitments (SHC)

Main Tool: Statistical Hash Commitments (SHC)

Main Tool: Statistical Hash Commitments (SHC)

Receiver Committing Phase:

Receiver Committing Phase:

Opening Phase:

Statistical **H**ash **C**ommitments (SHC): Statistical Hiding Property

Statistical **H**ash **C**ommitments (SHC): Computational Binding

Receiver Committing Phase:

Hash value for $\beta = 0$: Hash value for $\beta = 1$:

Statistical **H**ash **C**ommitments (SHC): Computational Binding

Computational Binding:

it's hard for committer to find both

Malicious

Committer

- Statistical Hiding ⇒ Statistical Receiver-Private
- Computational Binding ⇒ Computational Sender-Private

Where

- Statistical Sender-Privacy of $OT \Rightarrow$ Statistical Hiding
- Computational Hiding of \implies Computational Binding

Summary of Results

- Statistical Zaps from quasi-poly hardness Learning with Errors
- 3-round statistical receiver-private oblivious transfer from poly hardness
 - 2-round statistical sender-private oblivious transfer
 - Computational Diffie-Hellman Assumption

Full version : ia.cr/2020/235

Thank you!