Statistical Zaps and New Oblivious Transfer Protocols

Vipul Goyal Abhishek Jain Zhengzhong Jin Giulio Malavolta
Carnegie Mellon
University
Johns Hopkins
University
Johns Hopkins University
Carnegie Mellon University
University of California,
Berkeley

Statistical Security in 2-party Protocols

Statistical Security in 2-party Protocols

- Everlasting security Computational unbounded adversary can't break.
- Hard to achieve
- Impossible for both parties to achieve for general functionalities
- Focus of this work: One-side Statistical Security
- Interactive Proof Systems: Statistical Privacy for Prover
- Oblivious Transfer: Statistical Privacy for Receiver

Statistical Security in 2-party Protocols

- Everlasting security Computational unbounded adversary can't break.
- Hard to achieve
- Impossible for both parties to achieve for general functionalities
- Focus of this work: One-side Statistical Security
- Interactive Proof Systems: Statistical Privacy for Prover
- Oblivious Transfer: Statistical Privacy for Receiver

Interactive Proof System

Interactive Proof System

Interactive Proof System

Witness Indistinguishability (WI)

Witness Indistinguishability (WI)

- Unlike zero-knowledge, WI can be achieved in 2-round

Zaps: 2-round Public-Coin WI [DNoo]

$x \in L$

Zaps: 2-round Public-Coin WI [DNoo]

Zaps: 2-round Public-Coin WI [DNoo]

Zaps: 2-round Public-Coin WI [DNoo]

Public Verifiable

Zaps: 2-round Public-Coin WI [DNoo]

Public Verifiable

Public Coin: Verifier only uses public random coins

Zaps: 2-round Public-Coin WI [DNoo]

Public Verifiable

Public Coin: Verifier only uses public random coins
Many Applications:

- Round-efficient secure multiparty computation [HHPV18]
- Resettable-secure protocols [DGS09]

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

NIZKs

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

NIZKs

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]
- Decisional Linear Assumption [GOS06]

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

NIZKs

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]

Zaps

- Decisional Linear Assumption [GOS06]

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

NIZKs

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]

Zaps

- Decisional Linear Assumption [GOS06]
- [BP15] Zaps from Indistinguishability Obfuscation
- Above works are computational Zap proofs

Previous Works

[DNOO] Zaps and NIZK proofs in common random string model are equivalent.

NIZKs

- Quadratic Residuosity Assumption [DMP88]
- Trapdoor permutation [FLS90]

Zaps

- Decisional Linear Assumption [GOS06]
- [BP15] Zaps from Indistinguishability Obfuscation
- Above works are computational Zap proofs

Question (1): Does there exist statistical Zaps?

Question (1): Does there exist statistical Zaps?

Result (1): Statistical Zaps from quasi-poly hard Learning with Errors

Question (1): Does there exist statistical Zaps?

Result (1): Statistical Zaps from quasi- poly hard Learning with Errors

[KKS18] achieves statistical private-coin WI.

Oblivious Transfer (OT)

Sender

m_{0}	m_{1}

Receiver
$\beta \in\{0,1\}$

Oblivious Transfer (OT)

Oblivious Transfer (OT)

Oblivious Transfer (OT)

Oblivious Transfer (OT)

Oblivious Transfer (OT)

Oblivious Transfer (OT)

Receiver
$\beta \in\{0,1\}$

Receiver-Privacy: β is hidden to the sender

Many Applications:

- Secure multiparty computation [Yao86, GMW87]
- 2-round WI [JKKR17, BGI+17, KKS18]
- Non-malleable commitment [KS17]

Natural Question

2-round statistical sender-private OT in plain model [NP01, AIR01, Kal05, HK12, BD18]

Natural Question

2-round statistical sender-private OT in plain model [NP01, AIR01, Kal05, HK12, BD18]

Can we construct 2-round statistical receiver-private OT?

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT?

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT? Impossible!

Sender
Non-uniform
Malicious Receiver

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT? Impossible!

Sender

$$
\begin{aligned}
\mathrm{ot}_{1} & =\mathrm{OT}_{1}\left(\beta=0 ; r_{0}\right) \\
& =\mathrm{oT}_{1}\left(\beta=1 ; r_{1}\right)
\end{aligned}
$$

Non-uniform
Malicious Receiver

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT?

> Sender

$$
\begin{aligned}
\mathrm{ot}_{1} & =\mathrm{OT}_{1}\left(\beta=0 ; r_{0}\right) \\
& =\mathrm{OT}_{1}\left(\beta=1 ; r_{1}\right)
\end{aligned}
$$

Non-uniform
Malicious Receiver

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT?

Sender

$$
\begin{aligned}
\mathrm{ot}_{1} & =\mathrm{OT}_{1}\left(\beta=0 ; r_{0}\right) \\
& =\mathrm{OT}_{1}\left(\beta=1 ; r_{1}\right)
\end{aligned}
$$

m_{0}	m_{1}

Compromise sender-privacy

m_{0}	m_{1}

Natural Question

2-round statistical sender-private OT in plain model
[NP01, AIR01, Kal05, HK12, BD18]
Can we construct 2-round statistical receiver-private OT?

- [KKS18] 3-round protocol from super-poly hardness assumptions

Question (2): Based on polynomial hardness

 assumptions, does there exist 3 -round statistical receiver-private OT in the plain model?
Question (2): Based on polynomial hardness

 assumptions, does there exist 3 -round statistical receiver-private OT in the plain model?Result (2): 3-round statistical receiver-private OT from poly-hardness
Construction (1): 2-round statistical sender-private OT
Construction (2): Computational Diffie-Hellman assumption

Question (2): Based on polynomial hardness

 assumptions, does there exist 3 -round statistical receiver-private OT in the plain model?Result (2): 3-round statistical receiver-private OT from poly-hardness
Construction (1): 2-round statistical sender-private OT \rightarrow OT reversal
Construction (2): Computational Diffie-Hellman assumption

Technical Details
 Part I: Statistical Zaps

Statistical Zaps

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Starting Idea

- Compress a Σ-protocol via a Correlation Intractable Hash (CIH) $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$ [CGH98, KRR17, CCRR18, HL18, CCH+19, PS19]

Correlation Intractable Hash (CIH)

A CIH is a hash function $\left\{\mathrm{H}_{k}(\cdot)\right\}_{k}$:
$\forall C$, let $k \leftarrow\{0,1\}^{\text {poly }(\lambda)}$, it's hard to find an x, such that

Idea for Security

Idea for Security

- WI: follows from hiding property of the commitment

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor

Given m^{*}, the (only) accepting β^{*} is efficiently computable
Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$

- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor

Given m^{*}, the (only) accepting β^{*} is efficiently computable
Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$

- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor

Given m^{*}, the (only) accepting β^{*} is efficiently computable ζ
Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$

- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor

Given m^{*}, the (only) accepting β^{*} is efficiently computable $\} \beta^{*}=C\left(\alpha^{*}\right)$ Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$

- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor

Given m^{*}, the (only) accepting β^{*} is efficiently computable $\} \beta^{*}=C\left(\alpha^{*}\right)$ Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$

- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor Given m^{*}, the (only) accepting β^{*} is efficiently computable $\}$ Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$ Contradicts CIH!
- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor Given m^{*}, the (only) accepting β^{*} is efficiently computable $\}$ Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$ Contradicts CIH!
- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Idea for Security

- Soundness: Extract m^{*} from α^{*} using a trapdoor Given m^{*}, the (only) accepting β^{*} is efficiently computable $\}$ Verifier accepts $\Rightarrow \beta^{*}=\operatorname{CIH}_{k}\left(\alpha^{*}\right)=C\left(\alpha^{*}\right)$ Contradicts CIH!
- Hiding \& Extractable commitments can be built in CRS model
\Rightarrow Zaps in CRS model

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Prepare $m, b^{\prime} \leftarrow^{\$}\{0,1\}$

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Prepare $m, b^{\prime} \leftarrow \$\{0,1\}$ Sender

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

$$
b \leftarrow^{\$}\{0,1\}
$$

Receiver (b)

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

Hiding \& Extractability in Plain Model

- Use a 2-round statistical sender-private oblivious transfer

'Weakly Secure' Statistical Zaps

- Statistical WI with err $\approx 1 / 2$ (when $b \neq b^{\prime}$)
- Computational Soundness

'Weakly Secure' Statistical Zaps

- Statistical WI with err $\approx 1 / 2$ (when $b \neq b^{\prime}$)
- Computational Soundness

'Weakly Secure' Statistical Zaps

- Statistical WI with err $\approx 1 / 2\left(\right.$ when $\left.b \neq b^{\prime}\right)$
- Computational Soundness

Amplify the Security

Sender

Receiver

Amplify the Security

Amplify the Security

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}
\end{gathered}
$$

Receiver

$\boldsymbol{b} \leftarrow\{0,1\}^{l}$

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

\boldsymbol{b}^{\prime}-th position

Receiver
$\boldsymbol{b} \leftarrow\{0,1\}^{l}$

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

\uparrow
\boldsymbol{b}^{\prime}-th position

Receiver
$\boldsymbol{b} \leftarrow\{0,1\}^{l}$

Amplify the Security

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

Receiver
$\boldsymbol{b} \leftarrow\{0,1\}^{l}$

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

Receiver
$\boldsymbol{b} \leftarrow\{0,1\}^{l}$

With $\operatorname{Pr}=1-2^{-l}$,
$\boldsymbol{b} \neq \boldsymbol{b}^{\prime}$, hide $m \vee$

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

Receiver
$\boldsymbol{b} \leftarrow\{0,1\}^{l}$
With $\operatorname{Pr}=2^{-l}$, $\boldsymbol{b}=\boldsymbol{b}^{\prime}$, extract $m \vee$

Amplify the Security

Sender
$\boldsymbol{b}^{\prime} \leftarrow\{0,1\}^{l}$
2^{l}-positions

Receiver

$\boldsymbol{b} \leftarrow\{0,1\}^{l}$
With $\operatorname{Pr}=2^{-l}$, $\boldsymbol{b}=\boldsymbol{b}^{\prime}$, extract $m \vee$

- Can be abstracted as a 2 -round statistical hiding extractable commitment [KKS18]

- Statistical WI with err $\approx 1 / 2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_{1} is pseudorandom

- Statistical WI with err $\approx 1 / 2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_{1} is pseudorandom

- Statistical WI with err $\approx 1 / 2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_{1} is pseudorandom

- Statistical WI with err $\approx 1 / 2^{l}$ (negligible)
- Computational Soundness via Complexity Leveraging
- Public Coin Property : OT_{1} is pseudorandom

Technical Details Part II: Oblivious Transfer (OT)

Technical Details Part II: Oblivious Transfer (OT)

Technical Details Part II: Oblivious Transfer (OT)

Statistical Receiver-Private OT

$\operatorname{Receiver}(\beta \in\{0,1\})$

Get m_{β}

Statistical Receiver-Private OT

m_{0}	m_{1}

$$
\operatorname{Receiver}(\beta \in\{0,1\})
$$

Get m_{β}

Statistical Receiver-Privacy: β is statistical hidden

Main Tool: Statistical Hash Commitments (SHC)

Main Tool: Statistical Hash Commitments (SHC)

Receiver

Committer $(\beta \in\{0,1\})$

Main Tool: Statistical Hash Commitments (SHC)

Receiver

Committing Phase:

Main Tool: Statistical Hash Commitments (SHC)

Receiver
Committing Phase:

Committer $(\beta \in\{0,1\})$

Main Tool: Statistical Hash Commitments (SHC)

Main Tool: Statistical Hash Commitments (SHC)

Receiver
Committing Phase:
Committer $(\beta \in\{0,1\})$

Opening Phase:
Hash value for $\beta=0$:
Hash value for $\beta=1$:

Main Tool: Statistical Hash Commitments (SHC)

Receiver
Committing Phase:
Committer $(\beta \in\{0,1\})$

Opening Phase:
Hash value for $\beta=0$:
Hash value for $\beta=1$:

Main Tool: Statistical Hash Commitments (SHC)

Receiver
Committing Phase:
Committer $(\beta \in\{0,1\})$

Opening Phase:
Hash value for $\beta=0$:
Hash value for $\beta=1$:

Statistical Hash Commitments (SHC): Statistical Hiding Property

Statistical Hash Commitments (SHC): Computational Binding

Malicious
Committer

Hash value for $\beta=0$:
Hash value for $\beta=1$: \square

Statistical Hash Commitments (SHC): Computational Binding

Malicious
Committer

Hash value for $\beta=0$:
Hash value for $\beta=1$: \square
Computational Binding:
it's hard for committer to find both

3-round Statistical Receiver-Private OT from SHC

3-round Statistical Receiver-Private OT from SHC

$\operatorname{Sender}\left(m_{0}, m_{1}\right)$

$$
\operatorname{Receiver}(b \in\{0,1\})
$$

3-round Statistical Receiver-Private OT from SHC

- Statistical Hiding \Rightarrow Statistical Receiver-Private
- Computational Binding \Rightarrow Computational Sender-Private

Statistical Hash Commitment from 2-round OT

Receiver

Committer $(\beta \in\{0,1\})$

Statistical Hash Commitment from 2-round OT

Statistical Hash Commitment from 2-round OT

Receiver

Committer $(\beta \in\{0,1\})$

Statistical Hash Commitment from 2-round OT

Receiver

If $\beta=0$
$0:$
$1:$

If $\beta=1$

Where
\square

Statistical Hash Commitment from 2-round OT

Receiver
Committer $(\beta \in\{0,1\})$

Where
$\square=\square \oplus \square$

- Statistical Sender-Privacy of OT \Rightarrow Statistical Hiding
- Computational Hiding of $\square \Rightarrow$ Computational Binding

Summary of Results

- Statistical Zaps from quasi-poly hardness Learning with Errors
- 3-round statistical receiver-private oblivious transfer from poly hardness
- 2-round statistical sender-private oblivious transfer
- Computational Diffie-Hellman Assumption

Full version : ia.cr/2020/235

Thank you!

