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• Unlike zero-knowledge, WI can be achieved in 2-round
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Prover Verifier

Public Coin: Verifier only uses public random coins

𝑥 ∈ 𝐿

Public Verifiable

Many Applications:
• Round-efficient secure multiparty computation [HHPV18]
• Resettable-secure protocols [DGS09]
……
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Result (1): Statistical Zaps from quasi-poly hard 
Learning with Errors

Question (1): Does there exist statistical Zaps?

[KKS18] achieves statistical private-coin WI.
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𝑚0 𝑚1

𝑚0 𝑚1

Get 𝑚𝛽 Sender-Privacy:
𝑚1−𝛽 is hidden

Receiver-Privacy: 𝛽 is hidden to the sender

𝛽 ∈ {0,1}

Many Applications:
• Secure multiparty computation [Yao86, GMW87]
• 2-round WI [JKKR17, BGI+17, KKS18]
• Non-malleable commitment [KS17]
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Result (2): 3-round statistical receiver-private OT from 
poly-hardness

Construction (1): 2-round statistical sender-private OT
Construction (2): Computational Diffie-Hellman assumption

Question (2): Based on polynomial hardness
assumptions, does there exist 3-round statistical 

receiver-private OT in the plain model?

OT reversal
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Technical Details
Part I: Statistical Zaps
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Statistical Zaps

Prover Verifier

𝑥 ∈ 𝐿

Public Verifiable
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Correlation Intractable Hash (CIH)

A CIH is a hash function H𝑘 ⋅ 𝑘:

∀ 𝐶, let 𝑘 ← 0,1 poly(𝜆), it’s hard to find an 𝑥, such that

𝑥

H𝑘(⋅)

𝐶(⋅)

H𝑘 𝑥 = 𝐶(𝑥)⋅
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• WI: follows from hiding property of the commitment
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Statistical Receiver-Privacy: 𝛽 is statistical hidden
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Statistical Hash Commitments (SHC):
Statistical Hiding Property
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Thank you!

Summary of Results

• Statistical Zaps from quasi-poly hardness Learning with Errors

• 3-round statistical receiver-private oblivious transfer from poly hardness 
• 2-round statistical sender-private oblivious transfer
• Computational Diffie-Hellman Assumption

Full version : ia.cr/2020/235
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