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Abstract—Cosmological N -body simulations are essential for
studies of the large-scale distribution of matter and galaxies
in the Universe. This analysis often involves finding clusters of
particles and retrieving their properties. Detecting such “halos”
among a very large set of particles is a computationally inten-
sive problem, usually executed on the same super-computers
that produced the simulations, requiring huge amounts of
memory.

Recently, a new area of computer science emerged. This area,
called streaming algorithms, provides new theoretical methods
to compute data analytics in a scalable way using only a single
pass over a data sets and logarithmic memory.

The main contribution of this paper is a novel connection
between the N -body simulations and the streaming algorithms.
In particular, we investigate a link between halo finders and
the problem of finding frequent items (heavy hitters) in a
data stream, that should greatly reduce the computational
resource requirements, especially the memory needs. Based on
this connection, we can build a new halo finder by running
efficient heavy hitter algorithms as a black-box. We implement
two representatives of the family of heavy hitter algorithms, the
Count-Sketch algorithm (CS) and the Pick-and-Drop sampling
(PD), and evaluate their accuracy and memory usage. Com-
parison with other halo-finding algorithms from [1] shows that
our halo finder can locate the largest haloes using significantly
smaller memory space and with comparable running time.
This streaming approach makes it possible to run and analyze
extremely large data sets from N -body simulations on a
smaller machine, rather than on supercomputers. Our findings
demonstrate the connection between the halo search problem
and streaming algorithms as a promising initial direction of
further research.
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I. INTRODUCTION

The goal of astrophysics is to explain the observed
properties of the universe we live in. In cosmology in
particular, one tries to understand how matter is distributed
on the largest scales we can observe. In this effort, advanced
computer simulations play an ever more important role. Sim-
ulations are currently the only way to accurately understand
the nonlinear processes that produce cosmic structures such
as galaxies and patterns of galaxies. Hence a large amount of
effort is spent on running simulations modelling representa-
tive parts of the universe in ever greater detail. A necessary
step in the analysis of such simulations involves locating
mass concentrations, called “haloes”, where galaxies would
be expected to form. This step is crucial to connect theory
to observations – galaxies are the most observable objects
that trace the large-scale structure, but their precise spatial
distribution is only established through these simulations.

Many algorithms have been developed to find these haloes
in simulations. The algorithms vary widely, even conceptu-
ally. There is no absolutely agreed-upon physical definition
of a halo, although all algorithms give density peaks, i.e.
clusters of particles. Galaxies are thought to form at these
concentrations of matter. Some codes find regions inside an
effective high-density contour, such as Friends-of-Friends
(FoF) [2]. In FoF, particles closer to each other than a
specified linking length are gathered together into haloes.
Other algorithms directly incorporate velocity information
as well. Another approach finds particles that have crossed
each other as compared to the initial conditions, which also
ends up giving density peaks [3]. FoF is often considered
to be a standard approach, if only because it was among
the first used, and is simple conceptually. The drawbacks of
FoF include that the simple density estimate can artificially
link physically separate haloes together, and the arbitrariness
of the linking length. A halo-finding comparison project [4]
evaluated the results of 17 different halo-finding algorithms;
further analysis appeared in [1]. We take the FoF algorithm
as a fiducial result for comparison, but compare to results
from some other finders, as well.

Halo-finding algorithms are generally computationally
intensive, often requiring all particle positions and veloci-



ties to be loaded in memory simultaneously. In fact most
are executed during the execution of the simulation itself,
requiring comparable computational resources. However, in
order to understand the systematic errors in such algorithms,
it is often necessary to run multiple halo-finders, often well
after the original simulation has been run. Also, many of the
newest simulations have several hundred billion to a trillion
particles, with a very large memory footprint, making such
posterior computations quite difficult. Here, we investigate
a way to apply streaming algorithms as halo finders, and
compare the results to those of other algorithms participating
in the Halo-Finding Comparison Project.

Recently, streaming algorithms [5] have become a popular
way to process massive data sets. In the streaming model,
the input is given as a sequence of items and the algorithm
is allowed to make a single or constant number of passes
over the input data while using sub-linear, usually poly-
logarithmic space compared to the storage of the data.
Streaming algorithms have found many applications in net-
working ([6], [7], [8]), machine learning ([9], [10]), financial
analytics ([11], [12], [13]) and databases ([14], [15]).

In this paper, we apply streaming algorithms to the area
of cosmological simulations and provide space and time
efficient solutions to the halo finding problem. In particular,
we show a relation between the problem of finding haloes in
the simulation data and the well-known problem of finding
“heavy hitters” in the streaming data. This connection allows
us to employ efficient heavy hitter algorithms, such as
Count-Sketch [16] and Pick-and-Drop Sampling [17]. By
equating heavy hitters to haloes, we are implicitly defining
haloes as positions exceeding some high density threshold.
In our case, these usually turn out to be density peaks,
but only because of the very spiky nature of the particle
distributions in cosmology. Conceptually, FoF haloes are
also regions enclosed by high density contours, but in
practice, the FoF implementation is very different from ours.

II. STREAMING ALGORITHM

In this section, we investigate the application of streaming
algorithms to find haloes using a strong relation between the
halo-finding problem and the heavy hitter problem, which
we discuss in section II-A4. Heavy hitter algorithms find
the k densest regions, that may physically correspond to
haloes. In our implementation, we carefully choose k to get
the desired outcome. This parameter k is as also discussed
in section II-A4. We first present in the next sub-section the
formal definition of streaming algorithms and the connection
between heavy hitter problem and halo-finding problem.
After that, we presents the basic procedures of the two
heavy hitter algorithms: Count-Sketch and Pick-and-drop
Sampling.

A. Streaming Data Model

1) Definitions: A data stream D = D(n,m) is an ordered
sequence of objects p1, p2, . . . , pn, where pj = 1 . . .m.
The elements of the stream can represent any digital object:
integers, real numbers of fixed precisions, edges of a large
graphs, messages, images, web pages, etc. In the practical
applications both n and m may be very large, and we
are interested in the algorithms with o(n + m) space. A
streaming algorithm is an algorithm that can make a single
pass over the input stream. The above constraints imply
that a streaming algorithm is often a randomized algorithm
that provides approximate answers with high probability. In
practice, these approximate answers often suffice.

We investigate the results of cosmological simulations
where the number of particles will soon reach 1012.
Compared to offline algorithms that require the input to be
entirely in memory, streaming algorithms provide a way to
process the data using only megabytes memory instead of
gigabytes or terabytes in practice.

2) Heavy Hitter: For each element i, its frequency fi
is the number of its occurrences in D. The kth frequency
moment of a data stream D is defined as Fk(D) =

∑m
i=1 f

k
i .

We say that an element is “heavy” if it appears more times
than a constant fraction of some Lp norm of the stream,
where Lp = (

∑
i f

p
i )1/p for p > 1. In this paper, we

consider the following heavy hitter problem.

Problem 1. Given a stream D of n elements, the ε-
approximate (φ,Lp)-heavy hitter problem is to find a set
of elements T :

• ∀i ∈ [m], fi > φLp =⇒ i ∈ T .
• ∀i ∈ [m], fi < (φ− ε)Lp =⇒ i 6∈ T .

We allow the heavy hitter algorithms to use randomness;
the requirement is that the correct answer should be re-
turned with high probability. The heavy hitter problem is
equivalent to the problem of approximately finding the k
most frequent elements. Indeed, the top k most frequent
elements are in the set of (φ,L1)-heavy hitters in the stream,
where φ = Θ(1/k). There is a Ω(1/ε2) trade-off between
the approximation error ε and the memory usage. Heavy
hitter algorithms are building blocks of many data stream
algorithms ([18], [19]).

We treat the cosmological simulation data from [4] as a
data stream. To do so, we apply an online transformation
that we describe in the next section.

3) Data Transformation: In a cosmological simulation,
dark matter particles form structures through gravitational
clustering in a large box with periodic boundary conditions
representing a patch of the simulated universe. The box
we use [4] is of size 500 Mpc/h, or about 2 billion
light-years. The simulation data consists of positions and



velocities of 2563, 5123 or 10243 particles, each representing
a huge number of physical dark-matter particles. They are
distributed rather uniformly on large scales (& 50 Mpc/h)
in the simulation box, clumping together on smaller scales.
A halo is a clump of particles that are gravitationally bound.

To apply the streaming algorithms, we transform the data.
We discretize the spatial coordinates so that we will have a
finite number of types in our transformed data stream. We
partition the simulation box into a grid of cubic cells, and
bin the particles into them. The cell size is chosen to be 1
Mpc/h as to match a typical size of a large halo; there are
thus 5003 cells. This parameter can be modified in practical
applications, but it relates to the space and time efficiency of
the algorithm. We summarize the data transformation steps
as follows.
• Partition the simulation box into grids of cubic cells.

Assign each cell a unique integer ID.
• After reading a particle, determine its cell. Insert that

cell ID into the data stream.
Using the above transformation, streaming algorithms

can process the particles in the same way as an integer data
stream.

4) Heavy Hitter and Dense Cells: For a heavy-hitter
algorithm to save memory and time, the distribution of cell
counts must be very non-uniform. The simulations begin
with an almost uniform lattice of particles, but after gravity
clusters them together, the density distribution in cells can
be modeled by a lognormal PDF ([20], [21]):

P
(1)
LN (δ) =

1

(2πσ2
1)1/2

exp

{
− [ln(1 + δ) + σ2

1/2]2

2σ2
1

}
1

1 + δ
,

(1)

where δ = ρ/ρ̄ − 1 is the overdensity, σ2
1(R) = ln[1 +

σ2
nl(R)], and σ2

nl(R) is the variance of the nonlinear density
field in spheres of radius R. Our cells are cubic, not
spherical; for theoretical estimates, we use a spherical top-
hat of the same volume as a cell.

Let N be the number of cells, and Pc be the distribution
of the number of particles per cell. The Lp heaviness φp can
be estimated as

φp ≈
P200

(N〈Pcp〉)1/p
, (2)

where P200 is the number of particles in a cell with density
exactly 200ρ̄. This density threshold is a typical minimum
density of a halo, coming from the spherical-collapse model.
We theoretically estimated σnl for the cells in our density
field by integrating the nonlinear power spectrum (using
the fit of [22], and the cosmological parameters of the
simulation) with a spherical tophat window. The grid size
in our algorithm is roughly 1.0 Mpc (5003 cells in total),
giving σnl(Cell) ≈ 10.75. We estimated φ1 ≈ 10−6 and

φ2 ≈ 10−3, matching order-of-magnitude with the measure-
ment of the actual density variance from the simulation cells.
These heaviness values are low enough to presume that a
heavy-hitter algorithm will efficiently find cells correspond-
ing to haloes.

B. Streaming Algorithms for Heavy Hitter Problem

The above relation between the halo-finding problem
and the heavy hitter problem encourages us to apply
efficient streaming algorithms to build a new halo finder.
Our halo finder takes a stream of particles, performs the
data transformation described in section II-A3 and then
applies a heavy hitter algorithm to output the approximate
top k heavy hitters in the transformed stream. These heavy
hitters correspond to the densest cells in the simulation
data as described in section II-A4. In our first version of
the halo finder, we use Count-Sketch algorithm [16] and
Pick-and-Drop Sampling [17].

1) The Count-Sketch Algorithm: For a more general-
ized description of the algorithm, please refer to [16]. For
completeness, we summarize the algorithm as follows. The
Count-Sketch algorithm uses a compact data structure to
maintain the approximate counts of the top k most frequent
elements in a stream. This data structure is an r × t matrix
M representing estimated counts for all elements. These
counts are calculated by two sets of hash functions: let
h1, h2, . . . , hr be r hash functions, mapping the input items
to {1, . . . , t}, where each hi is sampled uniformly from the
hash function set H . Let s1, s2, . . . , sr be hash functions,
mapping the input items to {+1,−1}, uniformly sampled
from another hash function set S. We can interpret this
matrix as an array of r hash tables, each containing t buckets.

There are two operations on the Count-Sketch data struc-
ture. Denote Mi,j as the jth bucket in the ith hash table:
• Add(M,p): For i ∈ [1, r], Mi,hi[p]+ = si[p].
• Estimate(M,p), return mediani{hi[p] · si[p]}
The Add operation updates the approximate frequency

for each incoming element and the Estimate operation
outputs the current approximate frequency. To maintain and
store the estimated k most frequent elements, CountSketch
also needs a priority queue data structure. The pseudocode
of Count-Sketch algorithm is presented in Figure 1. More
details and theoretical guarantees are presented in [16].

2) The Pick-and-Drop Sampling Algorithm: Pick-and-
Drop Sampling is a sampling-based streaming algorithm to
approximate the heavy hitters. To describe the idea of Pick-
and-Drop sampling, we view the data stream as a sequence
of r blocks of size t. Define di,j as the jth element in the ith

block and di,j = pk(i−1)+j in stream D. In each block of
the stream, Pick-and-Drop sampling will pick one random
sample and record its remaining frequency in the block. The
algorithm maintains a sample with the largest current counter



1: procedure COUNTSKETCH(r, t, k,D) . D is a stream
2: Initialize an empty r × t matrix M .
3: Initialize an min-priority queue Q of size k
4: (particle with smallest count is on the top).
5: for i = 1, . . . , n and pi ∈ D do
6: Add(M,pi);
7: if pi ∈ Q then
8: Pi.count++;
9: else if Estimate(M,pi) > Q.top().count then

10: Q.pop();
11: Q.push(pi);
12: end if
13: end for
14: return Q
15: end procedure

Figure 1: Count-Sketch Algorithm

and drops previous samples. The pseudocode of Pick-and-
Drop sampling [17] is given in Figure 2 and we need the
following definitions in Figure 2. For i ∈ [r], j, s ∈ [t],
q ∈ [m] define:

fi,q = |{j ∈ [t] : di,j = q}|, (3)

ai,s = |{j∗ : s ≤ j∗ ≤ t, di,j∗ = di,s}|. (4)

1: procedure PICKDROP(r, t, λ,D)
2: Sample S1 uniformly at random on [t].
3: L1 ← d1,S1

,
4: C1 ← a1,S1

,
5: u1 ← 1.
6: for i = 2, . . . , r do
7: Sample Si uniformly at random on [t].
8: li ← di,Si , ci ← ai,Si

9: if Ci−1 < max(ci, λui−1) then
10: Li ← li,
11: Ci ← ci,
12: ui ← 1
13: else
14: Li ← Li−1,
15: Ci ← Ci−1 + fi,Li−1

,
16: ui ← qi−1 + 1
17: end if
18: end for
19: return {Lr, Cr}
20: end procedure

Figure 2: Pick-and-Drop Algorithm

The detail implementation is in Section III-B.
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Figure 3: Halo mass distribution of various halo finders.

III. IMPLEMENTATION

A. Simulation Data

The N -body simulation data we use as the input to
our halo finder was used in the halo-finding comparison
project [4] and consists of various resolutions (numbers
of particles) of the MareNostrum Universe cosmological
simulation [23]. These simulations ran in a 500 h−1Mpc
box, assuming a standard ΛCDM (cold dark matter and
cosmological constant) cosmological model.

In the first implementation of our halo finder, we consider
two halo properties: center position and mass (the number
of particles in it). We compare to the the fiducial offline
algorithm FoF. The distributions of halo sizes from different
halo finders are presented in Fig. 3.

Since our halo finder builds on the streaming algorithms
of finding frequent items, the algorithms need to transform
the data as described in section II-A3 — dividing all the
particles into different small cells and label each particle
with its associated cell ID. For example, if an input dataset
contains three particles p1, p2, p3 and they are all included
in a cell of ID = 1, then the transformed data stream
becomes 1, 1, 1. The most frequent element in the stream
is obviously 1 and thus the cell 1 is the heaviest cell overall.

B. Implementation Details

Our halo finder implementation is written using C++ with
GNU GCC compiler 4.9.2. We implemented Count-Sketch
and Pick-and-Drop sampling as two algorithms to find
heavy hitters.

1) Count-Sketch-based Halo Finder: There are three ba-
sic steps in the Count-Sketch algorithm, which returns the
heavy cells and the number of particles associated with them.



Figure 4: Count-Sketch Algorithm

(1) Allocate memory for the CountSketch data structure to
hold current estimates of cell frequencies; (2) use a priority
queue to record the k most frequent elements; (3) return
the positions of the top k heavy cells. Figure 4 presents the
process of the Count-Sketch.

The Count-Sketch data structure is an r × t matrix.
Following [24], we set r = log(nε ) and t to be sufficiently
large (>1 million) to achieve an expected approximation
error ε = 0.05. We build the matrix as a 2D array with
r× t 0’s. For each incoming element in the stream, an Add
operation has to be executed and an estimate operation
needs to be executed only when this element is not in the
queue.

2) Pick-and-Drop-based Halo Finder: In the Pick-and-
Drop sampling based halo finder, we implement a general
hash function H: N+ → {1, 2, . . . , ck}, where c ≥ 1, to
gain the probability of success to approximate the k heaviest
cells. We apply the hash function H on every incoming
element and put the elements with the same hash value
together such that the original stream is divided into ck
smaller sub-streams. Meanwhile, we initialize ck instances
of Pick-and-Drop sampling so that each PD instance will
process one sub-stream. The whole process of approximating
the heavy hitters is presented in Figure 5. In this way, the
repeated items in the whole stream will be distributed into
the same sub-stream and they are much heavier in this sub-
stream. With high probability, each instance of Pick-and-
Drop sampling will output the heaviest one in each of the
sub-streams, and in total we will have ck output items.
Because of the randomness in the sampling method, we
will expect some of inaccurate heavy hitters among the total
ck outputs. By setting a large c, most of the actual top k
most frequent elements should be inside the ck outputs (raw
result).

To get precise properties of haloes, such as the center, and
mass, an offline algorithm such as FoF [2] can be applied

Figure 5: Pick-and-Drop Sampling

Figure 6: Halo Finder Procedure

to the particles inside the returned heavy cells and their
neighbor cells. This needs an additional pass over the data
but we only need to store a small amount of particles to
run those offline in-memory algorithms. The whole process
of the halo finder is represented in Figure 6, where heavy
hitter algorithms can be regarded as a black box. That is,
any theoretically efficient heavy hitter algorithms could be
applied to further improve the memory usage and practical
performance.

C. Shifting Method

In the first pass of our halo finder, we only use the position
of a heavy cell as the position of a halo. However, each
heavy cell may contain several haloes and some of the haloes
located on the edges between two cells cannot be recognized
because the cell size in the data transformation step is fixed.
To recover those missing haloes, we utilize a simple shifting
method:
• Initialize 2d instances of Count-Sketch or Pick-and-

Drop in parallel, where d is the dimension. Our simu-
lation data reside in three dimensions, so d = 3.

• Move all the particles to one of the 2d directions
with a distance of 0.5 Mpc/h (half of the cell size).
In each of the 2d shifting processes, assign a Count-



Sketch/Pick-and-Drop instance to run. By combining
the results from 2d shifting processes, we expect that
the majority of k largest haloes are discovered. All the
parallel instances of the CountSketch/Pick-and-Drop
are enabled by OpenMP 4.0 in C++.

IV. EVALUATION

To evaluate how well streaming based halo finders work,
we mainly focus on testing it in the following three aspects:
• Correctness: Evaluate how close are the positions of k

largest haloes found by the streaming-based algorithms
to the top k large haloes returned by some widely used
in-memory algorithms. Evaluate the trade-off between
the selection k and the quality of result.

• Stability: Since streaming algorithms always require
some randomness and may produce some incorrect
results, we want to see how stable are streaming based
heavy hitter algorithms are.

• Memory Usage: Linear memory space requirement is
a ”bottle neck” for all offline algorithms, and it is the
central problem that we are trying to overcome by
applying streaming approach. Thus it is significantly
important to theoretically or experimentally estimate
the memory usage of Pick-and-Drop and Cound-sketch
algorithms.

In the evaluation, all the in-memory algorithms we
choose to compare were proposed in the Halo-Finding
Comparison Project [4]. We test against the fiducial FOF
method, as well as four others that find density peak:

1) FOF by Davis et al.[2]
“Plain-vanilla” Friends-of-Friends.

2) AHF by Knollmann & Knebe [25]
Density peaks search with recursively refined grid

3) ASOHF by Planelles & Quilis. [26]
Finds spherical-overdensity peaks using adaptive den-
sity refinement.

4) BDM [27], run by Klypin & Ceverino “Bound Den-
sity Maxima” – finds gravitationally-bound spherical-
overdensity peaks.

5) VOBOZ by Neyrinck et al [28]
“Voronoi BOund Zones” – finds gravitationally bound
peaks using a Voronoi tessellation.

A. Correctness

As there is no agreed upon rule how to define the center
and the boundary of a halo, it is impossible to theoretically
define and deterministically verify the correctness of any
halo finder. Therefore a comparison to the results of previous
widely accepted halo finders seems to be the best practical
verification of a new halo finder. To compare the outputs
of two different halo finders we need to introduce some
formal measure of similarity. The most straight forward way
to compare them is to consider one of them H as a ground

truth, and another one E as an estimator. Among this the
FOF algorithm is considered to be the oldest and the most
widely used, thus in our initial evaluation we decided to
concentrate on the comparison with FOF. Then the most
natural measure of similarity is number of elements in H
that match to elements in output of E. More formally we will
define “matches” as: for a given θ we will say that center
ei ∈ E matches the element hi ∈ E if dist(ei, hi) ≤ θ,
where dist(·, ·) is Euclidean distance. Then our measure of
similarity is:

Q(θ) = Q(Ek, Hk, θ) = |{hi ∈ Hk : min
ej∈Ek

dist(hi, ej) < θ}|,

where k represents k heaviest halos.
We compare the output of both streaming-based halo

finders to the output of in-memory halo finders. We made
comparisons for the 2563, 5123 and 10243-particle simula-
tions, finding the top 1000 and top 10000 heavy hitters. Since
the comparison results in all cases were similar, the figures
presented below are for the 2563 dataset, and k = 1000.

On the Figure 7a we show for each in-memory algorithm
the percentage of centers that were not found by streaming-
based halo finder. We can see that both the Count-Sketch
and Pick-and-Drop algorithms missed not much more than
10 percent of the haloes in any of the results from the in-
memory algorithms.
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Figure 8: Number of detected halos by our two algorithms.
The solid lines correspond to (CS) and the dashed lines
to (PD). The dotted line at k = 1000 shows our selection
criteria. The x axis is the threshold in the number of particles
allocated to the heavy hitter. The cyan color denotes the total
number of detections, the blue curves are the true positives
(TP), and the red curves are ethe false positives (FP).

To understand whether the 10 percent means two halo
catalogs are close to each other or not, we will choose one
of the in-memory algorithms as a ground truth and compare
how close the other in-memory algorithms are. Again, we
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Figure 7: (a) Measures of the disagreement between PD and CS, and various in-memory algorithms. The percentage shown
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√
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top-1000 FoF haloes farther than a distance d away from any top-1000 halo from the algorithm of each curve.

choose FOF algorithm as a ground truth. The comparison
is depicted in Fig. 7b. From this graph you can see that
the outputs of Count-Sketch and Pick-and-Drop based halo
finders are closer to the FOF haloes, than other in-memory
algorithms. It can be easily explained, as after finding heavy
cells we apply the same FOF to these heavy cells and
their neighborhoods, the output should always have similar
structure to the output of in-memory FOF on the full dataset.
Also from this graph you will see that each line can be
represented as a mix of two components, one of which is
the component of random distribution. It means that after a
distance of

√
3/2 all matches are the same if we just put

bunch of points at random.
The classifier is using a top-k to select the halo candidates.

Figure 8 shows how sensitive the results are to the selection
threshold of k = 1000. It shows several curves, including
the total number of heavy hitters, the ones close to an FoF
group – we can call these true positive (TP) – and the ones
detected, but not near an FoF object (false positives FP).
From the figure, it is clear that the threshold of 1000 is
close to the optimal detection threshold, preserving TP and
minimizing FP. This corresponds to a true positive detection
rate (TPR) of 96% and a false positive detection rate of
3.6%. If we lowered our threshold to k = 900, our TPR
drops to 91% but the FPR becomes even lower, 0.88%.

These tradeoffs can be shown on a so-called ROC-curve
(receiver operating characteristic), where the TPR is plotted
against the FPR. This shows how lowering the detection
threshold increases the true detections, but the false detection
rate increases much faster. Using the ROC curve, shown
below we can see the position of the k = 1000 threshold as
a circle and the k = 900 as a square.

Finally, we should also ask, besides the set comparison,
how do the individual particle cardinalities counted around
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Figure 9: This ROC curve shows the tradeoff between true
and false detections as a function of threshold. The figure
plots TPR vs FPR on a log-log scale. The two thresholds
are shown with symbols, the circle denotes 1000, and the
square is 900.

the heavy hitters correspond to the FoF ones. Our particle
counting is restricted to neighboring cells, while the FoF is
not, so we will always be undercounting. To be less sensitive
to such biases, we compare the rank ordering of the two
particle counts in the two samples in Fig. 10. The rank 1 is
assigned to the most massive objects in each set.

B. Stability

As most of the streaming algorithms utilize randomness,
we estimate how stable our results are compared to the re-
sults from a deterministic search. In the deterministic search
algorithm, we find the actual heavy cells by counting the
number of particles inside them; we perform the comparison
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Figure 10: The top 1000 heavy hitters are rank-ordered by
the number of their particles. We also computed a rank of
the corresponding FoF halo. The linked pairs of ranks are
plotted. One can see that if we adopted a cut at k = 900, it
would eliminate a lot of the false positives.

for the dataset containing 2563 particles. To perform this
evaluation we run 50 instances of each algorithm (denoting
the outputs as {Cics}50i=1 and {Cipd}50i=1). We also count the
number of cells of each result that match the densest cells
returned by the deterministic search algorithm Cds. The
normalized number of matches will be ρipd =

|Ci
pd∩Cds|
|Cds| and

ρics =
|Ci

cs∩Cds|
|Cds| correspondingly. Our experiment showed:

µ(ρics) = 0.946, σ(ρics) = 2.7 · 10−7

µ(ρipd) = 0.995, σ(ρipd) = 6 · 10−7

This means that the approximation error caused by ran-
domness is very small compared with the error caused by
transition from overdense cells to halo centers. This fact can
also be caught from the Fig. 11. On that figure you can see
that shaded area below and above the red line and green line,
which represents the range of outputs among 50 instances,
is very thin. Thus the output is very stable.

C. Memory Usage

Comparing with current halo finding solutions, streaming
approachs’ low memory usage is one of the most significant
advantages. To the best of our knowledge even for the
problem of locating 1000 largest haloes in the simulation
data with 10243 particles, there is no way to run other halo
finding algorithms on a regular PC since 10243 particles
already need ≈ 12GB memory to only store all the particle
coordinates; a computing cluster or even supercomputer is
necessary. Therefore, the application of streaming techniques
introduces a new direction on the development of halo-
finding algorithms.

Figure 11: Each line on the graph represents the top 1000
halo centers found with Pick-and-Drop sampling, Count-
Sketch, and in-memory algorithms, as described in section
III-B. The comparison with FOF is shown in Fig.7b. The
shaded area (too small to be visible) shows the variation
due to randomness.

To find top k heavy cells, Count-Sketch theoretically
requires following amount of space:

O(k log
n

δ
+

∑m
q′=k+1 f

2
q′

(εfk)2
log

n

δ
),

where 1− δ is probability of success, ε is an Qk estimation
error, and Qk is the frequency of k-th heaviest cell. It
is worth mentioning that in application to the heavy cell
searching problem the second term is the dominating one.
The first factor in the second term represents the linear
dependency of memory usage on the heaviness of top k cells.
Thus we can expect linear memory usage for small dataset.
But as dataset grows the dependency becomes logarithmic if
we assume the same level of heaviness. Experiments verify
this observation, as for small dataset with 2563 particles
Count-Sketch algorithm used around 900 megabytes mem-
ory, while for the large 10243-dataset, the memory usage
was increased to nearly 1000 megabytes. Thus the memory
grows logarithmically with the size of dataset if we assume
almost constant heaviness of the top k cells; that is why
such approach is scalable for even larger datasets.

In the experiments using this particular simulation data,
Pick-and-Drop sampling shows much better performance in
terms of memory usage than Count-Sketch. The actual usage
of memory was around 20 megabytes for the dataset with
2563 particles and around 30 megabytes for the dataset with
10243 particles.

V. CONCLUSION

In this paper we find a novel connection between the
problem of finding the most massive halos in cosmologi-



cal N-Body simulations and the problem of finding heavy
hitters in data streams. According to this link, we have
built a halo finder based on the implementation of Count-
Sketch algorithm and Pick-and-Drop sampling. The halo
finder successfully locates most (> 90%) of the k largest
haloes using sub-linear memory. Most halo-finders require
the entire simulation to be loaded into memory. But our
halo finder does not and could be run on the massive N -
body simulations that are anticipated to arrive in the near
future with relatively modest computing resources. We will
continue to improve the performance of our halo finder,
something we have as yet not paid much attention to. In
the very first implementation we evaluated here, we mainly
focus on the verification of precision instead of performance.
But both Count-Sketch and Pick-and-Drop sampling can
be easily parallelized further to achieve significantly better
performance. The majority of the computation on Count-
Sketch is spent on the calculations of r × t hash functions.
A straight forward way to improve the performance is taking
advantage of the highly parallel GPU streaming processors
to improve the performance of calculating a large number of
hash functions. Similarly, Pick-and-Drop sampling is also a
good candidate for more parallelism since the Pick-and-Drop
instances are running independently.

We also note that this halo finder finds only the k most
massive haloes. These are features of interest in the simula-
tion, but some further work is required for our methods to
return a complete set of haloes as an in-memory algorithm.

Future work:
1) Optimize the current methods using Count-Sketch and

Pick-and-Drop sampling. Our goal is to provide a halo
finder tool that can be running on personal PCs or even
laptops, and provide comparatively accurate results in
a reasonable running time.

2) An application of interest to cosmologists would be to
run a streaming algorithm similar to this that includes
velocity information; this is important in distinguish-
ing small “subhaloes” from FoF-type haloes. Includ-
ing additional attributes/dimensions in our algorithms
clustering is quite easy, and will be investigated in the
near future.
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