
QPipe: Quantiles Sketch Fully in the Data Plane

Zhuolong Yu

Johns Hopkins University

CoNEXT 2019

with Nikita Ivkin, Vladimir Braverman, Xin Jin

 1

Statistics over packet flows

 2

Efficient network management requires a
variety of statistics

Efficient network management requires a
variety of statistics

Traffic Engineering

Heavy hitter
detection

Worm Detection

AccountingServer running measurement job

 3

Statistics over packet flows

Programmable switch enriches the operations
on the data plane

 4

Statistics over packet flows

High packet processing rate!

Programmable switch enriches the operations
on the data plane

 4

Statistics over packet flows

High packet processing rate!

PISA: Protocol Independent Switch Architecture

Programmable
Parser Programmable Match-Action Pipeline

Converts packet
data into metadata

Operate on metadata and
update memory states

Programmable switch enriches the operations
on the data plane

 5

Statistics over packet flows

High packet processing rate!

Run measurement directly in data plane!

 6

Statistics over packet flows

Programmable switch enriches the operations
on the data plane

High packet processing rate!

Run measurement directly in data plane!

 6

Statistics over packet flows

Programmable switch enriches the operations
on the data plane

CM-Sketch

UnivMon-sigcomm16

Hashpipe-sosr17

High packet processing rate!

Run measurement directly in data plane!

 6

Statistics over packet flows

Programmable switch enriches the operations
on the data plane

CM-Sketch

UnivMon-sigcomm16

Hashpipe-sosr17

 Finding Quantile?

High packet processing rate!

Run measurement directly in data plane!

 6

Statistics over packet flows

Programmable switch enriches the operations
on the data plane

CM-Sketch

UnivMon-sigcomm16

Hashpipe-sosr17

 Finding Quantile?

(1) For query x, return the rank r(x), i.e.,
number of items smaller than x in S.

(2) For rank query i, return i-th smallest
item.

Given stream S=s1,…,sn

High packet processing rate!

A simple way to report quantile is Packet Sampling

 7

Statistics over packet flows

A simple way to report quantile is Packet Sampling

Requires large memory to achieve certain accuracy if the
flow stream is large

 7

Statistics over packet flows

A simple way to report quantile is Packet Sampling

Requires large memory to achieve certain accuracy if the
flow stream is large

Switch ASICs only have tens of MBs
of memory!

 7

Statistics over packet flows

A simple way to report quantile is Packet Sampling

Requires large memory to achieve certain accuracy if the
flow stream is large

Switch ASICs only have tens of MBs
of memory!

A memory efficient way to do sampling: KLL

 7

Statistics over packet flows

A simple way to report quantile is Packet Sampling

Requires large memory to achieve certain accuracy if the
flow stream is large

Switch ASICs only have tens of MBs
of memory!

A memory efficient way to do sampling: KLL

 7

Statistics over packet flows

Zohar Karnin, Kevin Lang,
and Edo Liberty, FOCS 2016

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

 8

Efficient quantile streaming

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

 8

Efficient quantile streaming

PktPktPktPktPktPktPktPkt

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=15 7 3 4 5 1 14 2

 9

Efficient quantile streaming

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=15 7 3 4 5 1 14 2

 9

Efficient quantile streaming

sampled_pkt.value=5

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=15 7 3 4 5 1 14 2

1. Sort the array.

 9

Efficient quantile streaming

sampled_pkt.value=5

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=11 2 3 4 5 5 7 14

1. Sort the array.

 10

Efficient quantile streaming

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=11 2 3 4 5 5 7 14

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

 10

Efficient quantile streaming

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=11 2 3 4 5 5 7 14

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

 11

Efficient quantile streaming

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

2

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=13 4 5 5 7 14

 12

Efficient quantile streaming

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

2

3 4 5 5 7 14

 13

Efficient quantile streaming

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

2 3

5 5 7 14

 14

Efficient quantile streaming

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

2 3 5 7

 15

Efficient quantile streaming

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

3 7Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

 16

Efficient quantile streaming

1. Sort the array.

2. Subsample: go through the array in order, randomly feed one item to
the next layer and drop the other item.

Instead of sampling packets into a flat array, KLL stores them in
a hierarchical way.

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

rank(7) = 8

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

rank(7) = 8
rank(8) = 12

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

rank(7) = 8
rank(8) = 12

1 2 3 4 4 5 5 6 6 7 7 7 8 9 10 11 12 12 12 13 13 14 14 14

Basic sampling:

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

rank(7) = 8
rank(8) = 12

1 2 3 4 4 5 5 6 6 7 7 7 8 9 10 11 12 12 12 13 13 14 14 14

Basic sampling:

14}

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

 17

Efficient quantile streaming

rank(7) = 8
rank(8) = 12

1 2 3 4 4 5 5 6 6 7 7 7 8 9 10 11 12 12 12 13 13 14 14 14

Basic sampling:

14}
24

1 2 3 4 8 9 10 11

5 6 12 13

7 14Layer 2

Layer 1

Layer 0

1 2 3 4 5 5 6 6 7 7 7 7 8 9 10 11 12 12 13 13 14 14 14 14

weight=4

weight=2

weight=1

Guarantee: KLL preserves ranks with approximation , given the
memory budget of .

±ϵn
O(1

ϵ log log 1
ϵ)

While basic sampling requires .O(1
ϵ2 log 1

ϵ)
 17

Efficient quantile streaming

rank(7) = 8
rank(8) = 12

1 2 3 4 4 5 5 6 6 7 7 7 8 9 10 11 12 12 12 13 13 14 14 14

Basic sampling:

14}
24

 18

System Design

 19

System Design

 19

System Design

sort()
I need do
sorting.

 19

System Design

sort()
No, you can’t.

 19

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

System Design

sort()
No, you can’t.

 19

We can use argmin() to find the two minimum items and subsample them

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

System Design

sort() argmin()
Okay, argmin()

maybe

 20

5 7 3 4 5 1 14 2theta=0

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

Okay, argmin()
maybe

 21

5 7 3 4 5 1 14 2

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=0

Okay, argmin()
maybe

 22

5 7 3 4 5 14

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=0

Okay, argmin()
maybe

 23

5 7 3 4 5 14

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta as the larger subsampled item

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=2

Okay, argmin()
maybe

 24

5 7 3 4 5 14

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta as the larger subsampled item

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=2

Okay, argmin()
maybe

 25

5 7 5 14

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta as the larger subsampled item

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=4

Okay, argmin()
maybe

 26

7 14

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them
1. Find two minimum items larger than theta

2. Subsample them

3. Update theta as the larger subsampled item

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

theta=5

Okay, argmin()
maybe

 27

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

Okay, argmin()
maybe

 27

System Design

sort() argmin()

We can use argmin() to find the two minimum items and subsample them

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

No, you can’t.

 27

System Design

sort() argmin()

Observation: Large portion of unsampled packets go through
switch pipeline anyway

We can use argmin() to find the two minimum items and subsample them

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

No, you can’t.

 27

System Design

sort() argmin()

Observation: Large portion of unsampled packets go through
switch pipeline anyway

Can these unsampled packets help?

We can use argmin() to find the two minimum items and subsample them

Challenge: Programmable switches only support simple
operations (read/write/simple arithmetic logic)

No, you can’t.

“worker packets” can help!

Switch pipeline

KLL

 28

System Design

Switch pipeline

KLL

We want these unsampled packets to carry some value and
help with some operations

Sampled

 29

System Design

“worker packets” can help!

Workers

Normal unsampled packet

Switch pipeline

KLL

 30

System Design

“worker packets” can help!

Switch pipeline

KLL
x

 30

System Design

“worker packets” can help!

Switch pipeline

KLL
x

 30

System Design

“worker packets” can help!

Switch pipeline

KLL
x

x

 30

System Design

“worker packets” can help!

Switch pipeline

KLL
x

x

With a number of “worker packets”, we can achieve many
functions (e.g., argmin(), swap())

 30

System Design

“worker packets” can help!

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2
Layer 0

Layer 1

 31

System Design

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2
Layer 0

Layer 1

Theta is the boundary for finding argmin()

M is a random indicator:

•If M=1, push the current item to next layer

•If M=0, drop the current item

 32

System Design

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2
Layer 0

Layer 1

Theta is the boundary for finding argmin()

M is a random indicator:

•If M=1, push the current item to next layer

•If M=0, drop the current item

 32

System Design Store the
minimum item

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

pkt.i=3

 33

System Design

Sampled packet

Layer 0

Layer 1

min=inf

Theta = 0

M=0

Stage 1

pkt.i=3

Stage 2 Stage 3

5

6

1

2

 34

System Design

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

 35

System Design

min=inf

Theta = 0

M=0

Stage 1

pkt.i=4

Stage 2 Stage 3

5

6

1

2

3

 36

System Design

Sampled packet
min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

pkt.i=4

 37

System Design

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

4

 38

System Design

Layer full

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

4

 38

System Design

Layer full

min=inf

Theta = 0

M=0

Stage 1

worker packet

Stage 2 Stage 3

5

6

1

2

3

4

 39

System Design

min=inf

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

4

meta . θ = 0

 40

System Design

v ≥ θ?

min=inf

Theta = 0

M=0

Stage 1

meta . v = 5

Stage 2 Stage 3

5

6

1

2

3

4

 41

System Design

min=inf

Theta = 0

M=0

Stage 1

meta . v = 5

Stage 2 Stage 3

5

6

1

2

3

4

min=5

index=0

 42

System Design

Theta = 0

M=0

Stage 1

meta . v = 6

Stage 2 Stage 3

5

6

1

2

3

4

min=5worker packet
meta . θ = 0

index=0

 43

System Design

Theta = 0

M=0

Stage 1

meta . v = 1

Stage 2 Stage 3

5

6

1

2

3

4

min=1worker packet
meta . θ = 0

index=2

 44

System Design

Theta = 0

M=0

Stage 1

meta . v = 2

Stage 2 Stage 3

5

6

1

2

3

4

worker packet
meta . θ = 0

 45

System Design

min=1

index=2

Theta = 0

M=0

Stage 1

meta . v = 3

Stage 2 Stage 3

5

6

1

2

3

4

worker packet
meta . θ = 0

 46

System Design

min=1

index=2

Theta = 0

M=0

Stage 1

meta . v = 4

Stage 2 Stage 3

5

6

1

2

3

4

worker packet
meta . θ = 0

 47

System Design

min=1

index=2

Theta = 0

M=0

Stage 1 Stage 2 Stage 3

5

6

1

2

3

4

recirculate

meta . idx = 2
meta . v = 1

 48

System Design

Theta = 0

M=1

Stage 1 Stage 2 Stage 3

5

6

1

2

3

4

recirculate

meta . idx = 2
meta . idx = 2
meta . m = 0

meta . v = 1
meta . v = 1

 49

System Design

Theta = 0

M=1

Stage 1 Stage 2 Stage 3

5

6

2

4

recirculate

meta . m = 0

 50

System Design

3

meta . idx = 2
meta . idx = 2meta . v = 1
meta . v = 1

Theta = 0

M=1

Stage 1 Stage 2 Stage 3

5

6

2

4

worker packets

 51

System Design

3

Theta = 0

M=1

Stage 1 Stage 2 Stage 3

5

6

2

4

worker packets

 51

System Design

3

Theta = 0

M=1

Stage 1 Stage 2 Stage 3

5

6

2

worker packets min=2

index=3

4

 52

System Design

3

Theta = 2

M=1

Stage 1 Stage 2 Stage 3

5

6

2

worker packets min=2

index=3

 53

System Design

4

3

• Experiment setup
๏ Three traces: traceroute-based measurements, DNS RTT measurements,

and high-speed internet backbone measurements.

•Metrics
๏ Avg. and Max. approximation error.
๏ True positive rate (TPR) and false positive rate (FPR) of finding heavy

hitters.

• Comparison
๏ QPipe
๏ Sampling
๏ Count-min Sketch

 54

Evaluation

• Experiment setup
๏ Three traces: traceroute-based measurements, DNS RTT measurements,

and high-speed internet backbone measurements.

•Metrics
๏ Avg. and Max. approximation error of finding quantile.
๏ True positive rate (TPR) and false positive rate (FPR) of finding heavy

hitters.

• Comparison
๏ QPipe
๏ Sampling
๏ Count-min Sketch

 55

Evaluation

• Experiment setup
๏ Three traces: traceroute-based measurements, DNS RTT measurements,

and high-speed internet backbone measurements.

•Metrics
๏ Avg. and Max. approximation error of finding quantile.
๏ True positive rate (TPR) and false positive rate (FPR) of finding heavy

hitters.

• Comparison
๏ QPipe
๏ Sampling
๏ Count-min Sketch

 56

Evaluation

 57

Evaluation

90x improvement!

 57

Evaluation

 58

Evaluation

Low false positive rate!

 58

Evaluation

• We present QPipe, to the best of our knowledge, the first quantiles
sketching algorithm implemented in the data plane.

• We show 90x improvement in precision under a fixed memory budget
compared with sampling baseline.

 59

Conclusion

• We present QPipe, to the best of our knowledge, the first quantiles
sketching algorithm implemented in the data plane.

• We show 90x improvement in precision under a fixed memory budget
compared with sampling baseline.

Takeaway

1. Report quantiles in the data plane

2. Employing “worker packets”

 59

Conclusion

Code available at https://github.com/netx-repo/QPipe

https://github.com/netx-repo/QPipe

Thank you!

 60

