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Abstract
Core-Stateless Fair Queueing (CSFQ) is a scalable algorithm
proposed more than two decades ago to achieve fair queueing
without keeping per-flow state in the network. Unfortunately,
CSFQ did not take off, in part because it required protocol
changes (i.e., adding new fields to the packet header), and
hardware support to process packets at line rate.

In this paper, we argue that two emerging trends are mak-
ing CSFQ relevant again: (i) cloud computing which makes
it feasible to change the protocol within the same datacen-
ter or across datacenters owned by the same provider, and
(ii) programmable switches which can implement sophisti-
cated packet processing at line rate. To this end, we present
the first realization of CSFQ using programmable switches.
In addition, we generalize CSFQ to a multi-level hierarchy,
which naturally captures the traffic in today’s datacenters,
e.g., tenants at the first level and flows of each tenant at the
second level of the hierarchy. We call this scheduler Hierar-
chical Core-Stateless Fair Queueing (HCSFQ), and show that
it is able to accurately approximate hierarchical fair queueing.
HCSFQ is highly scalable: it uses just a single FIFO queue,
does not perform per-packet scheduling, and only needs to
maintain state for the interior nodes of the hierarchy. We
present analytical results to prove the lower bounds of HCSFQ.
Our testbed experiments and large-scale simulations show that
CSFQ and HCSFQ can provide fair bandwidth allocation and
ensure isolation.

1 Introduction

Fair queueing is a canonical mechanism to provide fair band-
width allocation to network traffic by ensuring that each flow
gets its fair share irrespective of the other flows. This way, fair
queueing enforces isolation between competing flows, which
ensures that normal flows are protected from ill-behaving
flows. There is a long history of research on fair queue-
ing [1–12]. Many of the proposed solutions require to main-
tain per-flow state in the switch, and rely on complex data
structures and scheduling algorithms to realize fair queueing.

Core-Stateless Fair Queueing (CSFQ) [13] is a scalable al-
gorithm to realize fair queueing. Compared to the alternatives,
CSFQ has the unique property that it does not maintain per-
flow state in the network. With CSFQ, the sources or switches
at the edge classify traffic into flows and estimate per-flow
rate. In turn, the switches in the network estimate the fair rate,
and use probabilistic dropping to regulate each flow to its fair
rate without maintaining per-flow state.

While CSFQ was proposed more than twenty years ago, it
has not taken off. This is primarily due to two reasons. First, it
requires changes to the IP protocol (i.e., adding a field to the
IP header) and coordination across all switches (routers) in
the network. Second, CSFQ requires switches to estimate the
fair rate, compute a drop probability, and update the header of
each packet. To perform these operations at line rate we need
hardware support. These challenges are exacerbated by the
fact that routers belong to different, often competing, Internet
Service Provides (ISPs), which would all need to cooperate
to upgrade their infrastructures to support CSFQ.

However, two emerging technologies are making CSFQ
relevant again: (i) the advent of cloud computing and (ii)
the increased popularity of programmable switches. Cloud
providers own large datacenters consisting of many thou-
sands of servers. Since a datacenter is typically owned by a
single administrative entity (cloud provider) that controls both
the software and hardware, it is relatively easy for a cloud
provider to upgrade all its switches and servers to support
CSFQ. FairCloud [14] proposes to apply CSFQ for network
isolation in datacenters, but it does not have a hardware im-
plementation for CSFQ. The emergence of programmable
switches makes it possible to implement sophisticated packet
processing at line rate. In particular, as we will show in this
paper, existing programmable switches are powerful enough
to support CSFQ at line rate.

While datacenter deployment removes the adoption barriers
for CSFQ, it also raises new challenges. In particular, while
CSFQ has been designed for a flat hierarchy, the traffic in
today’s datacenters is naturally structured in a multi-level
hierarchy. For example, at the top level we typically have
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tenants and at the bottom level we have the flows of those
tenants. The mechanism of choice to manage such traffic is
hierarchical fair queueing [9,10,15], where each non-leaf node
distributes its excess bandwidth (i.e., the bandwidths unused
by some of its children) across its children. This allocation
policy is consistent with a per-tenant payment granularity, i.e.,
network resources are divided between tenants in proportion
to their payments [14]. In this case, if a flow of a tenant stops
sending data, that tenant would want to re-allocate the flow’s
bandwidth to its other flows, and not to the flows of other
tenants in the datacenter.

However, implementing hierarchical fair queueing is chal-
lenging. Existing solutions require per-flow state, and more
importantly, require complex queue management and packet
transfers in a hierarchy of queues [9, 10, 15]. Because of the
implementation complexity, hierarchical fair queueing is not
supported by today’s high-speed hardware switches.

To address this challenge, we propose Hierarchical Core-
Stateless Fair Queueing (HCSFQ). CSFQ only provides fair
queueing, not hierarchical fair queueing. Directly extending
CSFQ to support hierarchical fair queueing would require a
hierarchy of queues. HCSFQ is able to accurately approxi-
mate hierarchical fair queueing and it is highly scalable. The
key difference of our approach is that HCSFQ requires only a
single queue, not a hierarchy of queues. HCSFQ also requires
no packet scheduling. HCSFQ recursively computes the fair
rate of each node starting from the root, and then limits the
rate of each flow to its fair share rate. To the best of our knowl-
edge, HCSFQ is the first solution that enables hierarchical fair
queueing on commodity hardware at line rate while requiring
neither per-flow state nor hierarchical queue management.

An important distinction of HCSFQ from CSFQ is that
HCSFQ keeps the state of the interior nodes of the hierarchy
in the switch. The state of the interior nodes is necessary to
support hierarchical fair queueing, as the fair share rates of
distinct interior nodes are typically different. The excess band-
width of a flow is only shared with its sibling flows. That is, if
a flow changes its sending rate, it would impact the fair rate of
the sibling flows, but not necessarily of other flows in the hier-
archy. Note that similar to CSFQ, HCSFQ does not maintain
per-flow state (i.e., the state of the leaf nodes). Fortunately, for
today’s multi-tenant clouds, the number of tenants is orders of
magnitude smaller than the number of flows, and commodity
switches have sufficient on-chip memory to maintain the state
for these interior nodes.

We exploit the capability of programmable switching to
provide the first realization of CSFQ and HCSFQ on commod-
ity hardware. While conceptually simple, implementing these
schedulers on a programmable switch raises several techni-
cal challenges. First, they use a complex formula to estimate
the rates, which includes several floating-point multiplica-
tion, divisions and exponentiation operations. Unfortunately,
these operations are not supported by today’s programmable
switches. To get around this challenge, we leverage high-

precision timestamps and a window-based mechanism to esti-
mate these rates. Second, these algorithms rely on probabilis-
tic packet dropping to limit the flows to their fair rates. Un-
fortunately, probabilistic packet dropping cannot be directly
implemented in these switches. We discretize the probability
computation to approximate the dropping probability with
bounded error. To discretize these probabilities we leverage
the switch’s random number generator and take advantage
of multiple stages. Third, computing the fair rate exhibits a
circular dependency. Unfortunately, the switch data plane con-
sists of a multi-stage processing pipeline, and the later stages
cannot modify the state in the previous stages. To address
it, we judiciously use packet recirculation, and periodically
update the fair rate to minimize recirculation overhead.

In summary, we make the following contributions.
• We extend CSFQ to HCSFQ, the first scalable, practical

solution to implement hierarchical fair queueing on com-
modity hardware at line rate with no per-flow state and no
hierarchical queue management.

• We exploit the capability of programmable switching
ASICs to provide the first data plane design for CSFQ
and HCSFQ.

• We implement a prototype of CSFQ and HCSFQ on a Bare-
foot Tofino Wedge 100BF-65X switch. Our experiments
show that CSFQ and HCSFQ can provide fair bandwidth
allocation and ensure isolation.

2 Background and Motivation

Our work is motivated by the need for network isolation in
multi-tenant datacenters. CSFQ is a scalable solution for fair
queueing. We review the background of CSFQ, and identify
the opportunities for CSFQ in modern datacenters.

2.1 Core-Stateless Fair Queueing

Fair queueing provides max-min fairness for competing flows.
A max-min fair bandwidth allocation is one that any increase
of the allocation to some flows would necessarily decrease the
allocation of some other flows. The basic way to realize fair
queueing in a switch is to keep one queue for each flow and
use a scheduling algorithm to pick which queue to dequeue
a packet each time. There has been decades of research on
fair queueing [1–12]. While we leave the extensive discussion
to related work (§7), we emphasize that most solutions are
not scalable because of the need to maintain per-flow state
to classify flows and shape their rates with per-flow queues
and complex queue management. As a result, commodity
switches only support 10–20 queues.

CSFQ is a scalable algorithm to achieve fair queueing with
a unique property that it does not maintain per-flow state
in the network. Figure 1 shows the architecture of CSFQ.
CSFQ divides the network into edge and core. The switches
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Figure 1: Core-Stateless Fair Queueing.

or hosts at the edge, which do maintain per-flow state, use per-
flow state to classify packets into flows and estimate per-flow
arrival rate. Then the arrival rate of each flow is carried in a
custom packet header. The switches in the core only estimate
the total arrival rate of all flows, and then use it to estimate
the fair share rate with an iterative algorithm. The switches
compare the per-flow arrival rate in the packet header with
the fair share rate to compute a drop probability, and drop
packets to shape the rate of each flow to the fair share rate.

The key benefit of CSFQ is that the complexity (packet
classification and flow rate estimation with per-flow state) is
moved to the edge, making the core extremely simple. A core
switch only maintains the state for aggregate variables (total
arrival rate, total accepted rate and fair share rate), and only
uses one queue for packet buffering. More importantly, the
complexity of a core switch does not change with the number
of flows, making the core scale-free.

2.2 Opportunities
CSFQ did not take off because it requires cooperation be-
tween ISPs to provide end-to-end isolation for Internet flows,
and requires protocol and hardware changes. After twenty
years, we believe the time for CSFQ has come because of two
opportunities.

The first opportunity is from cloud computing. Cloud
computing has become the fundamental infrastructure of to-
day’s Internet. Datacenters power large-scale Internet ser-
vices we use everyday such as search, social networking and
e-commerce, and enterprises are increasingly moving their
workloads to the cloud. Fair bandwidth allocation and net-
work isolation for datacenter networks is an important prob-
lem [14, 16–28]. While there has been many fair queueing
algorithms proposed in the past [1–12], they are rarely de-
ployed in practice because they need to maintain per-flow
state in switches but switches can only support 10–20 queues.
CSFQ provides a scalable solution to address this problem.
Datacenter operators control the entire infrastructure, includ-
ing both software and hardware. Adopting CSFQ to enforce
isolation for datacenter networks naturally eliminates the need
of cooperation between different operators or ISPs, as a data-
center network is under a single administrative domain.

L

f1 f2 f3 f4

A1 A2

link capacity=10

55

1 4 2.5 2.5

(b) Hierarchical fair queueing.(a) Fair queueing.

flow f1 f2 f3 f4

arrival
rate

1 4 5 5

bandwidth
allocation

1 3 3 3

Figure 2: Fair queueing and hierarchical fair queueing.

The second opportunity is from programmable switching
ASICs. Traditional switching ASICs are fixed-function, and
adding a new feature like CSFQ requires switch vendors to de-
sign a new ASIC. Emerging programmable switching ASICs,
such as Barefoot Tofino [29], Broadcom Trident 4 [30] and
Cavium XPliant [31], allow users to program the data plane
and develop new features. Specifically, to implement CSFQ
on a programmable switch, we can program the parser to parse
the custom header of CSFQ (to carry per-flow rate), program
the match-action tables to implement the CSFQ algorithm,
and program the on-chip memory to store the aggregate state.
Because a datacenter network is under a single administrative
domain, it is easy for the operator to adopt the protocol and
hardware changes with programmable switching ASICs.

3 Hierarchical Fair Queueing

A multi-tenant cloud has a natural two-layer hierarchy, with
the tenants at the first layer and the flows of each tenant at
the second layer. Network isolation for multi-tenant data-
centers naturally requires hierarchical fair queueing. CSFQ
only supports fair queueing, but not hierarchical fair queue-
ing. Hierarchical fair queueing provides fair queueing in a
hierarchical manner. Flows are grouped into flow aggregates
in multiple layers. The root of the tree includes all the flows.
Each node in the tree includes a subset of the flows, called a
flow aggregate, and fairly allocates its bandwidth to its child
nodes. This is done recursively until leaf nodes, each of which
contains one flow. The flows are broadly defined, e.g., based
on five-tuple or network management considerations. In the
case of multi-tenant clouds, it is a two-layer bandwidth allo-
cation. The bandwidth is first allocated to the tenants in the
first layer, and then each tenant allocates its bandwidth to its
own flows in the second layer.

Fair queueing allocates bandwidth fairly to competing
flows, and is work conserving, i.e., unused bandwidth share
of a flow can be allocated to other flows. The key benefit of
hierarchical fair queueing is that it allows unused share of a
flow to be allocated to other flows in the same flow aggregate,
instead of being shared by all the flows. Fair queueing can be
considered as a special case of hierarchical fair queueing that
contains only one layer. Two-layer fair queueing for multi-
tenant clouds is desirable because the payment is based on
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(a) Traditional design of hierarchical fair queueing.

(b) Naive design to extend CSFQ for hierarchical fair queueing.
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Figure 3: Comparison of traditional hierarchical fair queueing
design, naive design to extend CSFQ, and HCSFQ design.

per tenant. A tenant would want to share its bandwidth only
between its own flows, as long as it has sufficient demand.

Example. We use an example in Figure 2 to contrast hierar-
chical fair queueing with fair queueing. There are four flows,
i.e., f1, f2, f3, and f4. The arrival rates of the four flows are 1,
4, 5, and 5, respectively. The link capacity is 10. With only
fair queueing, the unused share of f1 is evenly allocated to
all other three flows. As shown in Figure 2(a), the bandwidth
allocation to the four flows is (1, 3, 3, 3). Suppose that f1 and
f2 are in one flow aggregate (A1), and f3 and f4 are in the
other (A2). With hierarchical fair queueing, the unused fair
share of f1 is only allocated to f2, instead of also being shared
by f3 and f4. Figure 2(b) shows the bandwidth allocation with
two-layer hierarchical fair queueing, where the flows receive
1, 4, 2.5, and 2.5, respectively.

Challenge. Hierarchical fair queueing is known to be chal-
lenging to realize in switches at high speed. A traditional
design to support hierarchical fair queueing is to leverage a hi-
erarchy of queues, and each node in the hierarchy implements
fair queueing for the queues of its child nodes. Figure 3(a)
shows an example of such a design to support the two-layer
hierarchy in Figure 2(b). This design has two major problems.
First, the amount of state and the number of queues needed
by this design is proportional to the number of nodes in the
hierarchy. It needs to maintain per-flow state and the state
of each interior node in the tree. Second, the design involves
complex queue management with a hierarchy of queues, as
packets need to be moved between queues in different layers.
CSFQ does not require maintaining per-flow state, but naively
extending CSFQ to support hierarchical fair queueing would

still require a hierarchy of queues as shown in Figure 3(b).
These two factors together make the design hard to scale to
support a large number of flows. As a result, hierarchical fair
queueing is not supported by today’s high-speed switches.

4 HCSFQ Design

We propose Hierarchical Core-Stateless Fair Queueing
(HCSFQ), which generalizes CSFQ to support hierarchical
fair queueing. HCSFQ is the first scalable solution that en-
ables hierarchical fair queueing on commodity hardware at
line rate without per-flow state and complex hierarchical
queue management.

We give a high-level overview of HCSFQ in Figure 3(c).
In contrast to the traditional design in Figure 3(a), HCSFQ
has two unique properties: (i) it does not maintain per-flow
state, but only keeps the state of interior nodes; (ii) it does
not require a hierarchy of queues, but only uses one queue.
These two properties together dramatically simplify the de-
sign, making HCSFQ amenable to be implemented on high-
speed switches under strict timing and resource constraints.

The major distinction between HCSFQ and CSFQ is that
HCSFQ needs to maintain the state of interior nodes. This
is necessary because HCSFQ aims to provide hierarchical
fair bandwidth allocation for a flow hierarchy. Note that the
naive design of extending CSFQ in Figure 3(b) also requires
maintaining the state of interior nodes. In fair queueing, CSFQ
only requires to keep one fair share rate, which is the same for
all flows. But in hierarchical fair queueing, the fair share rates
for different flows can be different if two flows are not siblings
(i.e., do not have the same parent node). If a flow changes its
rate, it would affect the fair share rate of its sibling flows, but
not necessarily those of non-sibling flows. Figure 4 illustrates
this with a concrete example. There is a two-layer hierarchy
with four flows. At time T1, the arrival rates for the four flows
are 1, 4, 5, and 5 (the same as Figure 2). The fair share rate
at L is 5, and those at A1 and A2 are 4 and 2.5. Then at time
T2, f1 increases its arrival rate from 1 to 2. Then under fair
bandwidth allocation, the new fair share rate for the subtree
under A1 becomes 3, so that f1 receives 2 and f2 receives 3.
The rate change of f1, however, does not effect the fair share
rate for f3 and f4. This is because f3 and f4 are not sibling
nodes of f1.

CSFQ can be considered as a special case of HCSFQ which
contains only one layer, and as such, it only carries the state
for one interior node—the root.

4.1 Fluid Model
We first use a fluid model to formalize hierarchical fair queue-
ing. The fluid model considers a switch with output link ca-
pacity C, and the flows are modeled as a continuous stream
of bits. The flow hierarchy is represented as a directed graph
G(V,E), where V is the set of nodes and E is the set of edges.
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Figure 4: The flow arrival rates change from T1 to T2. It is
necessary for the switch to keep the state for the interior nodes
of the hierarchy in order to realize hierarchical fair queueing.

A node v ∈V represents a flow aggregate (i.e., a set of flows),
where r(v) is the arrival rate of the flow aggregate and c(v)
is the capacity allocated to v. A directed edge e(v,u) ∈ E
represents that u is a child of v.

Max-min fair bandwidth allocation ensures that the flows
that are bottlenecked by a link receives the same output rate,
which we call the fair share rate. Let α(v) be the fair share
rate that node v allocates to its children. If max-min fair
bandwidth allocation is achieved, for a child node u of node
v, the flow aggregate at u receives a bandwidth allocation of
c(u) = min(r(u),α(v)). The arrival rate of v is the sum of
the arrival rates of its children, i.e., r(v) = ∑e(v,u)∈E r(u). If
r(v)> c(v), the arrival rate of v exceeds the capacity allocated
to v, and the fair rate α(v) is the unique solution to

c(v) = ∑
e(v,u)∈E

min(α(v),r(u)). (1)

If r(v) ≤ c(v), the arrival rate of v is no more than the
capacity allocated to v, and all flows in v can be forwarded
without dropping packets. In this case, by convention we have

α(v) = max
e(v,u)∈E

r(u). (2)

The fair rate computation is done recursively from the root
to the leaf nodes. When v is the root, we have c(v) =C, where
C is the link capacity. Then starting from the root, we can
compute c(v) and α(v) for each node in the tree.

Based on this fluid model, there is a simple algorithm to
achieve max-min fair bandwidth allocation. In this algorithm,
we first use the recursive computation to compute α(v.parent)
for each leaf node v, which is the fair share rate allocated by
v’s parent to v. If r(v)≤ α(v.parent), then no bits need to be
dropped; otherwise, a fraction of (r(v)−α(v.parent))/r(v)
need to be dropped. Therefore, achieve max-min fair band-
width allocation, each incoming bit of the flow in v is dropped
by probability

max(0,1− α(v.parent)
r(v)

). (3)

4.2 HCSFQ Algorithm
The HCSFQ algorithm realizes the conceptual fluid algorithm
in a real switch. Similar to CSFQ, HCSFQ does not main-
tain per-flow state, and only requires a single FIFO queue
for packet buffering (Figure 3). The algorithm relies on two
building blocks from CSFQ, which are arrival rate estimation
and fair share rate estimation, and applies them recursively to
compute the fair share rate for each leaf node.

Arrival rate estimation. The arrival rate estimation is used
to estimate the arrival rate of a flow aggregate for a node in
the hierarchy. Like CSFQ, it uses the canonical exponential
averaging mechanism in networking for rate estimation. Let
ti and li be the arrival time and length of the ith packet of the
flow aggregate in node v. We use r(v) to denote the estimated
arrival rate of v. It is updated each time a new packet of v
arrives, based on the following equation,

r(v)new = (1− eTi/K)
li
Ti
+ eTi/Kr(v)old , (4)

where Ti = ti− ti−1 and K is a constant.

Fair share rate estimation. The fair share rate estimation
is used to estimate the fair share rate that a node allocates
to its children. The capacity of node v is c(v). Eq.(4) gives
the arrival rate of the node r(v). If r(v) ≤ c(v), then α(v) is
calculated using Eq.(2). Otherwise, α(v) should be the unique
solution to Eq.(1). We apply the iterative algorithm in CSFQ
to approximately solve the equation. Specifically, for each
node v, we maintain the accepted rate estimation f (v), which
is updated with Eq.(4) if the packet is not dropped. Then, α(v)
is approximately computed with the following formula,

α(v)new = α(v)old
c(v)
f (v)

. (5)

Note that the computation of α(v) is iterative. It converges
to the solution of Eq.(1) after several iterations, i.e., process-
ing several packets. Similar to CSFQ, HCSFQ also uses a
window of size Kc to account for inaccuracies introduced
by exponential averaging in rate estimation. That is, α(v) is
updated only if the node is congested (r(v)> c(v)) or uncon-
gested (r(v)≤ c(v)) for an interval of length Kc.

Packet state. A packet pkt carries two pieces of state in the
packet header, which are pkt.r and pkt.nodes.
• pkt.r is the arrival rate estimate of the flow the packet

belongs to.
• pkt.nodes is a list of node IDs that indicate the flow aggre-

gates the packet belongs to in the flow hierarchy, excluding
the leaf. For example, in Figure 2, if a packet pkt belongs
to f1 or f2, then pkt.nodes = [L,A1].
CSFQ only carries pkt.r in the packet header as there is

no flow hierarchy. HCSFQ additionally carries pkt.nodes
to track the set of flow aggregates the packet belongs to in
the hierarchy. Similar to CSFQ, both pkt.r and pkt.nodes are
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Algorithm 1 HCSFQ(pkt)
1: cur_α← 0
2: for v ∈ pkt.nodes do

// estimate arrival rate
3: r[v]← estimate_rate(pkt)
4: cur_α← α[v]

// calculate drop probability
5: prob← max(0,1− cur_α/pkt.r)
6: if prob > rand(0,1) then
7: drop_ f lag← T RUE
8: for v ∈ pkt.nodes do

// estimate accepted rate
9: if drop_ f lag is False then

10: f [v]← estimate_rate(pkt)
// allocate bandwidth

11: if v is root then
12: c[v]← link capacity
13: else
14: c[v]← min(α[v.parent],r[v])

// update fair share rate
15: if r[v]> c[v] then
16: if congest_ f lag[v] is FALSE then
17: congest_ f lag[v]← T RUE
18: start_time← current_time
19: else if current_time− start_time > Kc then
20: α[v]← α[v] · c[v]/ f [v]
21: start_time← current_time
22: else
23: if congest_ f lag[v] is T RUE then
24: congest_ f lag[v]← FALSE
25: start_time← current_time
26: tmp_α[v]← 0
27: else if current_time− start_time≤ Kc then
28: child_r← v.next = NULL ? pkt.r : r[v.next]
29: tmp_α[v]← max(tmp_α[v],child_r)
30: else
31: α[v]← tmp_α[v]
32: start_time← current_time
33: tmp_α[v]← 0
34: cur_α← α[v]

// drop or enqueue pkt
35: if drop_ f lag then
36: drop(pkt)
37: else
38: enqueue(pkt)

// update the packet rate
39: pkt.r← min(cur_α, pkt.r)

inserted at the edge. An edge switch (e.g., a software switch, a
NIC or a ToR switch in datacenter networks) performs packet
classification to get pkt.nodes, and uses Eq.(4) to estimate
the flow rate pkt.r. Both pkt.r and pkt.nodes are transparent
to end hosts and are removed by the switch at the last hop.

Hierarchical computation. The main difference between
HCSFQ and CSFQ is that HCSFQ performs fair share rate
estimation recursively in a hierarchical manner. In CSFQ, the
arrival rate estimation for each flow is done at the edge, and a
core switch only estimates the total arrival rate. In HCSFQ,
because there is a hierarchy of flow aggregates, a core switch
additionally estimates the arrival rate for each flow aggregate
(i.e., the internal nodes in the tree). Similarly, in CSFQ, a

r(L) = 15
c(L) = 10

f(L) = 10
𝛼(L) = 5

r(A1) = 5
c(A1) = 5

f(A1) = 5
𝛼(A1) = 4

r(A2) = 10
c(A2) = 5

f(A2) = 5
𝛼(A2) =2.5

drop: 0%

drop: 0%

drop: 50%

drop: 50%

f1,f2,f3,f4

f1,f2

f3,f4

f1

f2

f3

f4

buffer

switch

Figure 5: Example of the HCSFQ algorithm to provide hier-
archical fair queueing for the scenario in Figure 2(b).

core switch only calculates a fair share rate for the link, while
in HCSFQ, a core switch additionally calculates a fair share
rate for each flow aggregate. Importantly, the fair share rate
estimation in HCSFQ is used to bridge the computation of
different layers together. That is, for node v, the allocated
bandwidth c(v) is used to estimate the fair share rate α(v),
which is then used to compute the allocated bandwidth of its
children, i.e., c(u) for u ∈ v.children, in the next layer.

Algorithm 1 shows the pseudo code of the HCSFQ algo-
rithm. When a packet pkt arrives at the switch, the switch
updates the arrival rate estimate for each flow aggregate the
packet belongs to using Eq.(4), and gets the fair share rate of
the flow (line 1-4). Then the switch computes the dropping
probability based on Eq.(3) and decides whether to drop the
packet (line 5-7). After this, the switch recursively updates
the fair share rate of each flow aggregate in the hierarchy (line
8-34). Based on whether the packet is dropped, the switch up-
dates the accepted rate estimate for each flow aggregate (line
9-10). If node v is the root, then all flows are under this node,
and its allocated capacity is the link capacity (line 11-12);
otherwise, its allocated capacity is the max of the fair share
rate allocated by its parent and its arrival rate (line 13-14). If
the arrival rate of v is bigger than its allocated capacity, then
the node is congested, and the fair share rate is updated based
on Eq.(5) (15-21); otherwise, the fair share rate is the max
arrival rate of its children, i.e., based on Eq.(2) (line 22-33).
Note that we use a window of length Kc for fair share update
to account for inaccuracies in rate estimation. Based on the
dropping decision, the switch drops or enqueues the packet
(line 35-38). Finally, the arrival rate pkt.r is updated and will
be used by the next-hop switch (line 39). Note that the loops
(line 2-4 and line 8-34) are done in one pass and the fair share
rate is updated based on c[v.parent] from the last round.

Figure 5 illustrates how the algorithm works to realize
hierarchical fair queueing for the example in Figure 2. At
the root, the total arrival rate of all flows r(L) is 15, and
the capacity c(L) is the link capacity 10, which is below the
arrival rate. The root fairly allocates the capacity to the two
flow aggregates, A1 and A2. The figure shows the stable state
when the accepted rates and fair share rates of all the nodes
have converged. After convergence, the accepted rate f (L) is
10, and the fair share rate α(L) is 5. At node A1, the arrival
rate r(A1), which is the sum of r( f1) and r( f2), is 5, and the
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allocated capacity c(A1) is 5. The fair share rate is set as 4,
and there is no need to drop packets for f1 and f2. At node A2,
the arrival rate r(A2), which is 10, is bigger than the allocated
capacity, which is 5. A2 allocates its capacity to f3 and f4
fairly. Each receives a fair share rate of 2.5. So the switch
drops 50% of the packets for both f3 and f4.

Weighted HCSFQ. The HCSFQ algorithm can be extended
to support flows and flow aggregates with weights. For node
v, we use w(v) to represent the weight of the flow or flow ag-
gregate of v. Under max-min fair bandwidth allocation, com-
peting flows or flow aggregates at the bottlenecked link have
the same fair share rate r(v)/w(v). There are two changes
to the algorithm in order to incorporate the weight. The first
change is on the equation to compute the fair rate α(v) when
r(v)> c(v). Eq.(1) is changed to

c(v) = ∑
e(v,u)∈E

w(u) ·min(α(v),
r(u)
w(u)

). (6)

The second change is on the equation to compute the drop
probability. Eq.(3) is changed to

max(0,1−α(v.parent) · w(v)
r(v)

). (7)

4.3 Theoretical Guarantee
We have the following theorem to provide the theoretical guar-
antees for HCSFQ. The proof of the theorem is in Appendix.

Theorem 1. Consider a link with a hierarchical fair queueing
policy and a flow in the hierarchy. Let w1, w2, ..., wn be the
weights of the nodes from the root to the flow. Let α1, α2, ...,
αn be the constant normalized fair rate of the nodes from the
root to the flow. Let rαi = αiwi. If probabilistic dropping is
applied at the last layer, then the excess service received by
the flow that sends at a rate at no larger than R, is bounded
above by

rαnK(1+ ln
R

rαn

)+ lmax (8)

where lmax is the maximum packet length.
Consider a parent and its children in the hierarchy. Let the

number of children be k. Let rα′ be the weighted fair rate of
the parent, and r( j)

α be the weighted fair rate of the j-th child.
Suppose the inter-arrival time of every packet is at least τ,
and

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r( j)
α .

The the parent node does not drop packets.

Remark. The first conclusion bounds the excess service that
can be received by a flow. The second conclusion provides
the theoretical condition for only performing probabilistic
dropping at the leaf node.

5 Data Plane Design and Implementation

In this section, we describe a data plane design to imple-
ment CSFQ and HCSFQ on new-generation programmable
switches. Programmable switches enable users to program the
multi-stage match-action pipeline in the switch data plane to
implement custom features. Users can also access the on-chip
memory and implement stateful operations using the register
arrays provided by programmable switches. Programmable
switches also support a set of primitive actions (e.g., recircu-
late, bit shift, add and subtract) which make HCSFQ possible.
Based on the constructs of programmable switches, we show
how to design and implement the rate estimation, the fair rate
computation and the flow shaping logic (i.e., Algorithm 1) on
programmable switches. Our HCSFQ implementation con-
tains 1952 lines of code in P4 and is compiled to Barefoot
Tofino ASIC [29]. The code is open-source and available at
https://github.com/netx-repo/HCSFQ.

5.1 Single Layer
We first describe how to implement CSFQ, i.e., single-layer
HCSFQ, which is used as a building block to implement multi-
layer HCSFQ. There are three challenges to implement single-
layer HCSFQ on programmable switches: rate estimation,
probabilistic drop, and fair rate update. We describe each
challenge and its solution as follows.

Rate estimation. The switch needs to estimate two rates: the
total arrival rate r, and the accepted rate f . Both rates are
estimated with Eq.(4). Because switches have strict timing
and resource requirements, an action in a match-action table
can only contain a small number of operations in a limited
operation set. The equation cannot be directly implemented in
the switch data plane due to two reasons. First, the equation
involves several multiplication, division and exponentiation
operations on floating points. These operations are quite com-
plex and require multiple clock cycles to compute. As such,
they are not typically supported by the switch data plane.
Second, a rate (r or f ) is stored in a register of the on-chip
memory. To update the rate, the switch needs to read the rate
from the register, uses the equation to calculate the new rate,
and then updates the register. A register can only be accessed
by its own stage, but the equation includes multiple arithmetic
operations, which requires multiple stages to compute.

We leverage the high-precision timestamps available in the
data plane, and use a window-based mechanism to estimate
the rates. Programmable switches are able to provide high-
precision timestamps at the granularity of one nanosecond.
To estimate a rate, the switch maintains a pair of registers
(reg.byte and reg.start). One register (reg.byte) stores the to-
tal bytes of packets the switch has received in the current
window. The other register (reg.start) stores the start times-
tamp of the current window. For each incoming packet, the
switch first checks the current timestamp and compares it
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with reg.start to see if the packet belongs to the current win-
dow. If so, the switch adds the size of the packet to reg.byte;
otherwise, the switch clears reg.byte and sets reg.start to the
current timestamp. The switch keeps another register reg.rate
to store the current rate estimate. When a window is passed,
the switch uses reg.byte to update reg.rate, which can be done
with either a direct assignment, or a moving average. Our ex-
periments indicate that using a moving average (implemented
with several bit shift and addition operations) works better
and avoids oscillation with the control loop that updates the
fair share rate and drops packets.

The key benefit of this window-based mechanism is that
because the switch can provide nanosecond-granularity times-
tamps, we can use a small window size to accurately estimate
flow rate and capture sudden packet bursts. It is important to
note that the rate estimation is local to the switch and only
uses timestamps to divide time into windows. So there is no
need for time synchronization between switches.

Probabilistic drop. Probabilistic drop is used to regulate the
flows to the fair share rate. The switch uses the fair share rate
α and the flow arrival rate r to compute the probability to drop
packets of the flow (Eq.(3) and line 5 in Algorithm 1). Then
the switch checks the condition max(0,1−α/r)> rand(0,1)
to decide whether to drop an incoming packet or not. Similar
to rate estimation, the challenge is that switches do not support
the division operation to compute the probability. One way to
solve the problem is to use a similar window-based mecha-
nism as rate estimation, i.e., divide time into windows with
window size δ, and keep counters to allow up to rδ packets
to pass in each window and drop all remaining packets. The
drawback of this approach is that it introduces bursty packet
drops, which do not work well with congestion control. We
want to mimic the behavior of CSFQ to have random packet
drops that are uniformly distributed in the packet stream.

We discretize the probability computation to approximate
the drop probability with bounded error. We leverage the ran-
dom number generator provided by the data plane and use
multiple stages to realize the discretized computation. Specifi-
cally, to check the condition max(0,1−α/r)> rand(0,1), it
is sufficient to check rand(0,1)> α/r. We multiply r to both
sides of the inequality, and transform the condition to

rand(0,r)> α.

If the switch can generate a random number between 0 and r,
then we can simply compare the generated random number
and α to decide whether to drop a packet. However, some
switches can only generate a random number in a range of a
power of two, i.e., in [0,2n−1], where n is a given value at
compilation time and cannot be a variable. One possible solu-
tion is to use a large value for n at compilation time and use
rand(0,2n− 1)%r to approximate rand(0,r). But the mod-
ulo operation on an arbitrary number may not be supported,
and the generated numbers are not uniformly distributed in

[0,r]. We solve this problem by discretizing the probability
computation. We use an integer, instead of a floating point,
for the probability. We convert the condition to

rand(0,2n−1) · r > (2n−1) ·α.

While multiplication is not directly supported, we can convert
a multiplication operation into several bit shift and addition
operations. Since n is small and one stage can do multiple
operations, a multiplication can be done in a few stages. This
solution introduces errors because the random number is an in-
teger in [0,2n−1], instead of a real number in [0,1]. However,
the error is bounded by 1/2n, which reduces exponentially
with n. When n is 7, the error introduced by the approximation
is bounded by 1/128, which is smaller than 1%.

Fair rate update. When the link is congested, the fair share
rate is the unique solution to Eq.(1). Because HCSFQ does
not maintain per-flow state, it uses αnew = αoldc/ f (Eq.(5))
to approximately compute the fair share rate, where c is the
capacity and f is the accepted rate. Like rate estimation and
probabilistic drop, Eq.(5) cannot be supported because it con-
tains multiplication and division. What is more challenging
is that the fair rate update introduces the following circular
dependency to the packet processing.

read α→ enqueue/drop→ update f → update α

Specifically, the switch needs to read α to compute the drop
probability. Then based on whether to enqueue or drop a
packet, the switch updates the accepted rate f , which is then
used to update α. Because a register can only be accessed by
its own stage, the new value of α cannot be used to update
the register that stores α in a previous stage.

To address these two problems, we first observe that the
update equation αnew = αoldc/ f in HCSFQ is already an
approximation, and the correct α is iteratively computed after
several updates until f converges to c. As such, we replace
the update equation with an additive-increase multiplicative-
decrease method, which increases or decreases α each time if
f is not equal to c. This ensures that the value for α converges
to the correct value. Note that in the original CSFQ, α is also
computed iteratively to converge to the correct value.

To address the circular dependency, we leverage packet
recirculation available in programmable switches, and let the
recirculated packets carry the new value of α to update the
register for α in a previous stage. Switches have limited band-
width for recirculation. We judiciously use packet recircula-
tion to minimize recirculation overhead. We follow the same
scheme as CSFQ: update α only when the node is congested
or uncongested for a window length of Kc. Given the window
size Kc, α is updated by at most 1/Kc times per second. As
a concrete example, let Kc be 10 µs. Then α is updated by at
most 100K times per second, and the amount of recirculation
traffic is only a tiny fraction of the switch capacity.
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Figure 6: Testbed experiments of fair queueing for UDP. Flow
1–24 send at 2Gbps and Flow 25-32 send at 8Gbps.

5.2 Multiple Layers

The single-layer design is used as a building block to support
multiple layers. As shown in Algorithm 1 and Figure 5, the
processing of HCSFQ on a packet is performed layer by layer,
from the root to the leaf node. This well matches the multi-
stage packet processing pipeline of programmable switches.
The layers in HCSFQ can be mapped to the stages in the
pipeline, which naturally processes packets sequentially stage
by stage. The major difference between HCSFQ and CSFQ
is that HCSFQ needs to store more states as it has multiple
layers. CSFQ is a single-layer HCSFQ and only maintains
the state for three variables, which are the total arrival rate r,
the accepted rate f , and the fair share rate α. Each variable
use multiple registers as described in §5.1. HCSFQ maintains
the state for all interior nodes, each of which includes the
three variables. Commodity switches have 10-100 MB on-
chip memory [32], which is able to support a large number of
interior nodes. For a two-layer HCSFQ for tenant-level and
flow-level isolation in multi-tenant datacenters, a switch needs
to maintain per-tenant state, but not per-flow state. With 10-
100 MB memory, the switch can support millions of tenants.
In terms of the number of layers, our prototype supports up to
four layers on Barefoot Tofino. There is no theoretical limit on
the number of layers given the scalable algorithm design. The
constraints for practical implementations mainly come from
the restricted hardware primitives to implement the algorithm
as we describe in §5.1. These constraints are not fundamental.
Newer programmable switches (e.g., Barefoot Tofino 2) have
more stages and provide more hardware primitives to support
more layers. Despite this, we expect HCSFQ with 2–4 layers
should be sufficient to provide hierarchical isolation for many
datacenter scenarios (e.g., multi-tenancy).

6 Evaluation

In this section, we provide experimental results to demon-
strate the performance of HCSFQ. We first evaluate the per-
formance of single-layer HCSFQ (i.e., CSFQ), and show that
it can provide fair queueing (§6.1). We then evaluate the per-
formance of two-layer HCSFQ, and show that it can provide
hierarchical fair queueing to enforce tenant-level and flow-
level isolation for multi-tenant datacenters (§6.2). Finally, we
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Figure 7: Testbed experiments of fair queueing for UDP. Flow
1 is sending at a different rate every 2 seconds. Flow 2 is
sending at 20Gbps.
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Figure 8: Testbed experiments of fair queueing for TCP.

use simulations to evaluate HCSFQ in a large-scale datacenter
environment and compare it with several alternatives (§6.3).

All testbed experiments are conducted on a hardware
testbed with a Barefoot Tofino Wedge 100BF-65X switch.
Each server is configured with an 8-core CPU (Intel Xeon
E5-2620 @ 2.1GHz), 64GB memory and one 40G NIC (In-
tel XL710), and runs Ubuntu 16.04.6 LTS with Linux kernel
4.10.0-28-generic. Our switch implementation contains both
the edge and core functionalities for HCSFQ. Therefore, our
prototype provides hierarchical fair queueing without modi-
fications to either the software or hardware of the end hosts.
By default, we use TCP Cubic provided by the Linux kernel.

6.1 Fair Queueing Experiments
We first evaluate the capability of HCSFQ to provide fair
queueing. Fair queueing requires one-layer HCSFQ. We cover
both UDP and TCP traffic with equal or different weights. In
the experiments, we use four servers as the senders and one
server as the receiver. Each sender sends 8 flows (based on
five-tuple), and a total of 32 flows are sent to a receiver. All
servers are connected to the switch with 40Gbps links. The
bottleneck link is the link between the switch and the receiver.

UDP. If all UDP flows have the same sending rate, they would
get similar bandwidth under the tail-drop FIFO queue in the
switch. To make the experiment more interesting, we assign
different sending rates to the UDP flows. We let 24 flows
(Flow 1–24) send at 2Gbps and 8 flows (Flow 25–32) send
at 8Gbps. As shown in Figure 6(a), without HCSFQ, Flow
25–32 obtain higher bandwidth than Flow 1–24 because Flow
25–32 have larger sending rates. In comparison, HCSFQ is
able to fairly allocate bandwidth to the flows.
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Figure 9: Testbed experiments of fair queueing for TCP under
different configurations.
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Figure 10: Testbed experiments of UDP convergence. Flow 1
and 2 send at 40Gbps, and Flow 3 and 4 send at 20Gbps.

HCSFQ supports weighted fair queueing. We assign weight
1 to Flow 1–24 to and weight 2 to Flow 25–32. As shown in
Figure 6(b), without HCSFQ, the result is the same as that
with equal weights in Figure 6(a). On the other hand, HCSFQ
is able to allocate the bandwidth based on the weights. Flow
25–32 achieve higher throughput than Flow 1–24.

We also evaluate HCSFQ when the UDP flows dynami-
cally change their rates. We let Flow 1 send at a different
rate every 2 seconds (10Gbps, 20Gbps, 30Gbps and 40Gbps,
respectively) and let Flow 2 keep sending at 20Gbps. Without
HCSFQ, when the link is congested (from 4s to 8s), each flow
achieves a throughput in proportional to its sending rate. With
HCSFQ, two flows get the fair share (20Gbps) when the link
is congested.

TCP. Figure 8(a) shows the throughput of the flows with and
without HCSFQ. Because TCP congestion control provides
fair bandwidth allocation, the flows have similar throughput
even without HCSFQ. Adding HCSFQ to the switch does not
change the bandwidth allocation and thus has a similar result.

However, TCP cannot support weighted fair queueing. To
show the benefits of HCSFQ, we let Flow 1–24 have weight
1 and Flow 25–32 have weight 2. Without HCSFQ, the result
in Figure 8(b) is similar to that in Figure 8(a). With HCSFQ,
the flows get bandwidth in proportional to their weights. The
flows with higher weights (Flow 25–32) receive more band-
width than those with lower weights (Flow 1–24).

Different TCP algorithms. There are many TCP conges-
tion control algorithms. Without in-network enforcement, the
flows using aggressive congestion control algorithms would
get more bandwidth. In this experiment, we let Flow 1–24 use
TCP Cubic (provided by default in Linux) and Flow 25–32
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Figure 11: Testbed experiments of TCP convergence. Flow 1
and 2 have 0.3ms RTT, and Flow 3 and 4 have 0.7ms RTT.
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Figure 12: Evaluation result of mixed TCP and UDP traffic.

use TCP BBR. As shown in Figure 9(a), without HCSFQ,
because TCP BBR is more aggressive than TCP Cubic, the
flows with TCP BBR get almost all the bandwidth. On the
other hand, HCSFQ is able to provide fair queueing, regard-
less of the TCP algorithms they use. We have also tried TCP
Reno, which performs similar to TCP Cubic.

Different RTTs. In this experiment, we increase the RTT of
Flow 25–32 by 0.4 ms using Linux Traffic Control (Linux
tc). The default RTT measured by ping in the testbed, i.e.,
the RTT of Flow 1–24, is 0.3 ms (mostly host overhead).
The TCP throughput is inverse proportional to RTT [33]. In
our case, the flows with 0.3 ms RTT (Flow 1–24) should
have 0.7/0.3 ≈ 2× higher bandwidth than the flows with
0.7 ms RTT (Flow 25–32), which is close to what we see in
Figure 9(b). On the other hand, HCSFQ is able to provide fair
queueing even when the flows have different RTTs.

Convergence. We let four flows from different clients join
and leave a link every 16 seconds to evaluate convergence.
Figure 10 shows the UDP result. Flow 1 and 2 send at 40Gbps
(using DPDK [34]), and Flow 3 and 4 send 20Gbps. When
HCSFQ is enabled, the four flows quickly converge to a sim-
ilar rate, even though they have different sending rate. Fig-
ure 11 shows the TCP result. We set the RTTs of Flow 3 and 4
to 0.7ms using Linux tc, and the RTTs of of Flow 1 and 2 are
around 0.3ms by default. With HCSFQ, the four flows quickly
converge to a similar rate, regardless of different RTTs.

Mixed UDP and TCP traffic. We evaluate HCSFQ under a
mixed workload with both UDP and TCP traffic, and consider
the impact of ill-behaved UDP flows on TCP flows. In the
experiment, Flow 1–24 are TCP flows, and Flow 25–32 are
UDP flows that send at 3.2Gbps. As shown in Figure 12(a),
without HCSFQ, because UDP flows are not affected by TCP
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Figure 13: Testbed experiments of hierarchical fair queueing
for UDP. Two tenants should have the same total throughput.
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Figure 14: Testbed experiments of hierarchical fair queueing
for TCP. Two tenants should have the same total throughput.

congestion control, Flow 25–32 get 84% higher throughput
than their fair share. In comparison, HCSFQ is able to allocate
bandwidth fairly between all flows.

Gap between prototype implementation and theoretical
algorithm. Although the above experiment demonstrates the
effectiveness of HCSFQ on protecting TCP flows from aggres-
sive UDP flows, there is still a small gap from the theoretical
upper bound. Figure 12(b) shows the simulation result on the
same setup using a packet-level simulator Netbench [35]. In
the simulation, the TCP and UDP flows get almost identical
throughput with HCSFQ. The reason for the gap between
Figure 12(a) and Figure 12(b) is that to realize HCSFQ on a
real switch, we make several approximations described in §5.
These approximations cause extra jitters for TCP flows, and
UDP flows occupy the spare bandwidth caused by the jitters
and obtain higher throughput. We believe as programmable
switches get more capable, these approximations can be re-
moved to enable more accurate implementation of HCSFQ in
the future.

6.2 Hierarchical Fair Queueing Experiments
We now evaluate the capability of HCSFQ to provide hier-
archical fair queueing. We show that two-layer HCSFQ can
provide tenant-level and flow-level isolation for multi-tenant
datacenters. Similar to the previous experiments, we use 4
servers to send a total of 32 flows to a receiver. To evaluate
hierarchical fair queueing, we let tenant A contain 24 flows
(Flow 1–24) and tenant B contain 8 flows (Flow 25-32).

UDP. We set the sending rates of all 32 UDP flows to 8 Gbps.
As shown in Figure 13(a), without HCSFQ, the flows have

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

5

10

15

Fl
ow

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SP-PIFO

HCSFQ

(a) Average flow completion time for
flows less than 100KB.

10K 20K 30K 50K 80K 0.2M-1M≥ 2M
Flow size

10
0

10
1

10
2

Fl
ow

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SPPIFO

HCSFQ

(b) Flow completion time (avg. and
99th) breakdown for 70% load.

Figure 15: Simulation result under the web search workload.
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Figure 16: Simulation result under the web search workload
with injected UDP traffic.

similar throughput. Because tenant A has three times as many
flows as tenant B, the total throughput of A is three times
as that of B. With HCSFQ, two tenants get the same total
throughput. Because A has more flows, each flow in A has
lower throughput than that in B.

To evaluate weighted hierarchical fair queueing, we assign
different weights to tenant A’s flows. We let Flow 1–8 have
weight 2 and Flow 9–24 have weight 1. We assign the same
weight to tenant A and B. As shown in Figure 13(b), the result
without HCSFQ is the same as it in Figure 13(a). All flows
receive the same bandwidth, regardless of tenants and weights.
With HCSFQ, because the two tenants have the same weight,
the bandwidth allocation to the two tenants stays the same.
In tenant A, a flow with weight 2 has double throughput as
a flow with weight 1. In tenant B, all flows have the same
weight, and thus they have the same throughput.

TCP. TCP congestion control does not recognize tenants. Fig-
ure 14(a) shows the throughput of 32 TCP flows. Similar to
the UDP experiment, without HCSFQ, every flow receives
the same amount of bandwidth, and tenant A has higher total
throughput. With HCSFQ, the bandwidth is allocated equally
to the two tenants, and each flow in A has lower through-
put than each flow in B. We also assign weights to the TCP
flows as the UDP experiment, and the result is in Figure 14(b).
Similarly, with HCSFQ, Flow 1–8 in tenant A have lower
throughput than Flow 9–24, because Flow 1–8 lower higher
weight. The flows in tenant B have the same throughput be-
cause we do not change their weights.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    39



30 60 90 120 150 180
Number of flows

10
1

10
2

10
3

R
eq

ue
st

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SP-PIFO

HCSFQ

(a) Total request.

30 60 90 120 150 180
Number of flows

10
1

10
2

10
3

Fl
ow

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SP-PIFO

HCSFQ

(b) Individual flows.

Figure 17: Simulation result under the incast scenario.

6.3 Large-Scale Simulation

We use simulations to evaluate HCSFQ in a large-scale dat-
acenter environment. The simulations are conducted with
a packet-level simulator Netbench [35]. Following the set-
ting in SP-PIFO [12], we use a leaf-spine topology with 144
servers, 9 leaf switches and 4 spine switches, and set the ac-
cess and leaf-spine links to 1Gbps and 4Gbps, respectively.
We compare HCSFQ with TCP, DCTCP, and two state-of-
the-art approaches AFQ (32 queues) [11] and SP-PIFO (32
queues) [12]. As in [11,12], we enable ECN marking and use
DCTCP as the transport layer for HCSFQ, AFQ and SP-PIFO.

Web search workload. We generate traffic based on the web
search workload [36]. Figure 15(a) shows the flow completion
time (FCT) for small flows less than 100KB, and Figure 15(b)
shows the flow completion time breakdown when the network
is at 70% utilization. HCSFQ achieves up to 60% lower FCT
than vanilla TCP and DCTCP. AFQ and SP-PIFO are 15%
better than HCSFQ on FCT because HCSFQ enforces fairness
by packet dropping and cannot provide guarantee for sensitive
packets which can be a drawback for datacenter workload.
However, the gap is small and does not grow as the traffic load
gets larger. The result demonstrates that HCSFQ is compat-
ible with DCTCP, and can provide significant improvement
under a representative datacenter topology and workload as
the smaller flows can finish faster with a fair share rate.

Web search workload with injected UDP traffic. To eval-
uate performance isolation, we inject additional ill-behaved
UDP flows to the web server workload. The UDP flows are
evenly distributed in the topology and occupy about half of
the total bandwidth of the network. Figure 16 shows that TCP
and DCTCP perform significantly worse than others, because
they do not have performance isolation between TCP and
UDP flows. HCSFQ performs better than AFQ and SP-PIFO,
because AFQ and SP-PIFO map different flows to a small
number of queues and aggressive UDP traffic overloads the
queues shared by multiple TCP and UDP flows, while HCSFQ
drops excessive UDP packets before they enter the queues.

Incast. This experiment evaluates HCSFQ in an incase sce-
nario where a receiver requests for a 4.5MB file distributed
over N (=30–180) sender nodes. We follow the common prac-
tice to use a small RTOmin (200µs) for all schemes [37]. As
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Figure 18: Simulation result under the web search workload
with two tenants. Tenant 1 sends five times as many flows as
tenant 2, and should have higher FCT than tenant 2.

shown in Figure 17(a), when the number of flows grows,
HCSFQ achieves a lower request completion time compared
with SP-PIFO, TCP and DCTCP, and is close to AFQ. SP-
PIFO does not handle the incast traffic pattern well, because
there are many packets arriving at the same time with simi-
lar ranks saturating some queues and getting dropped. Fig-
ure 17(b) shows that HCSFQ achieves low average comple-
tion times for individual flows as the number of flows changes.

Web search workload with two tenants. This experiment
evaluates hierarchical fair queueing with two tenants. Tenant
1 sends five times as many flows as tenant 2, and the flow
size and arriving time follow the web search workload [36].
As shown in Figure 18, HCSFQ can provide tenant-level
fairness, so that since tenant 1 has more flows, the average
flow completion time of tenant 1 is higher than that of tenant
2. We also implement a hierarchical version of PIFO (HPIFO)
as an upper bound for comparison. Note that although HPIFO
delivers the best result, it needs to maintain three queues (one
in the first layer and two in the second layer) for two tenants.
It cannot be implemented on today’s switches and it is hard to
support many tenants due to the need of hierarchical queues.
Other approaches do not distinguish between tenants, and the
average flow completion times of the two tenants are similar.

Scalability with many tenants. We show the scalability of
HCSFQ on supporting many tenants and flows. When there
are many tenants and flows, the share of each tenant/flow is
small and the bias from rate estimation and rate update in
each step will accumulate. In this experiment, we examine
50 tenants. Half of the tenants (tenant 1-25) have one VM in
each server, and the other half (tenant 26-50) have two VMs
in each server. Each VM has a long-lasting TCP flow with
another VM of the same tenant in another rack. We set the
bandwidth of access links and leaf-spine links to 10Gbps and
40Gbps respectively in order to accommodate more tenants
and flows than previous experiments. Figure 19 shows that
TCP, DCTCP, AFQ and SP-PIFO do not provide tenant-level
fairness, and the tenants with more flows have higher total
throughput. In comparison, HCSFQ provides fair bandwidth
allocation between tenants, regardless of the number of flows
each tenant has.
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Figure 19: Throughput of different tenants. Each tenant of
Tenants 1-25 has one VM in each server, while each tenant
of Tenants 26-50 has two VM in each server. Each tenant is
sending pairwise TCP traffic between its VMs.

7 Related Work

Fair queueing. There is a long history of work on fair queue-
ing. The original proposal from Nagle [1] introduces the
idea of using separate FIFO queues for flows to achieve fair
bandwidth allocation. The bit-by-bit round robin (BR) algo-
rithm [2, 3] computes a bid number to estimate the departure
time for each packet, and transmits the packet with the lowest
bid number with a priority queue. To avoid expensive priority
queues, several algorithms, such as SFQ [4] and DRR [5], pro-
pose to map flows to a small number of FIFO queues, which
do not work well when the number of flows are far larger
than the number of queues. Another approach is probabilistic
packet dropping, which maintains per-flow state to estimate
drop probability, such as FRED [6], RED-PD [7] and AFD [8].
CSFQ [13] is distinct from these algorithms in that it does
not require per-flow state, per-flow queues or an expensive
priority queue. Hierarchical fair queueing adds a hierarchy
to fair queueing, which require not only per-flow state, but
also a hierarchy of queues [9,10,15]. HCSFQ eliminates both
requirements, making hierarchical fair queueing feasible to
be implemented in high-speed hardware switches.

Network isolation in multi-tenant cloud. Prior work has
proposed techniques to provide performance guarantees and
share bandwidth between multiple tenants [14,16–28,38,39].
However, existing works either can only enforce hierarchical
fairness at end hosts, or can not be efficiently implemented
in today’s hardware. For example, BwE [39] is a WAN band-
width allocation mechanism which enforces hierarchical fair
allocation at end hosts. FairCloud [14] proposes to apply
CSFQ for network isolation in datacenters, but it does not have
a hardware implementation for CSFQ and does not support
hierarchical fair queueing. HCSFQ is to the best of our knowl-
edge, the first solution to provide hierarchical fair queueing
on commodity switches with small switch memory footprint
and a single FIFO queue.

Programmable switches. Programmable switches have trig-
gered many innovations in recent years [32, 40–60]. Pro-
grammable packet scheduling is the most relevant to HCSFQ.

UPS [61] shows that Least Slack Time First (LSTF) provides
a good approximation for many scheduling algorithms in
practice. PIFO [10] provides a hardware design to realize the
abstraction of a push-in first-out (PIFO) queue. It relies on
a tree of PIFO queues to implement hierarchical fair queue-
ing. AFQ [11] approximates fair queueing by using a few
queues to emulate many queues. It stores per-flow counters
in a count-min sketch, and does not support hierarchical fair
queueing. SP-PIFO [12] uses several strict priority queues to
emulate a PIFO queue, which can support fair queueing, not
hierarchical fair queueing. Compared to them, we show how
to leverage programmable switches to support fair queueing
without per-flow state based on CSFQ, and present a new
algorithm HCSFQ to support hierarchical fair queueing.

8 Conclusion

We present HCSFQ, a scalable algorithm for hierarchical fair
queueing. Hierarchical fair queueing is a long standing prob-
lem in networking. Instead of relying on a hierarchy of queues
with complex queue management, HCSFQ only keeps the
state for the interior nodes and uses only one queue to achieve
hierarchical fair queueing. This dramatically simplifies the
design, and makes the design possible to be implemented in
high-speed switches. Indeed, we have built a prototype for
HCSFQ on programmable switches. Our prototype shows
that HCSFQ works well with both UDP and TCP without any
changes to either the hardware (e.g., NICs) or software (e.g.,
TCP/IP stack) of the end hosts.

To the best of our knowledge, HCSFQ is the first solu-
tion that has been demonstrated to provide hierarchical fair
queueing on hardware switches at line rate. HCSFQ is not
only theoretically interesting, but also has important practi-
cal implications. Network isolation is critical to multi-tenant
clouds, which have a natural two-layer hierarchy. This hierar-
chy naturally requires the datacenter network to first allocate
the bandwidth to the tenants, and then allocate each tenant’s
bandwidth between the tenant’s flows. HCSFQ provides the
first solution to enable this two-layer isolation in datacenter
networks. Our prototype shows that this can be done without
any changes to either the hardware (e.g., NICs) or software
(e.g., TCP/IP stack) of the end hosts, and it works well with
both UDP and TCP. We believe HCSFQ is a promising solu-
tion for network isolation in multi-tenant datacenters.
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A Proof of Theorem 1

Proof. The first conclusion is directly derived from the guar-
antee of CSFQ [13].

For the second conclusion, we consider a model with a
parent and k children. We add a script ′ to represent the no-
tations related to the parent, e.g., r′i is the estimated arrival
rate of the i-th packets at the parent. We add a script ( j) to
represent the notations related to the j-th child, e.g., r( j)

i is the
estimated arrival rate of the i-th packets at the j-th child. Sup-
pose the time episode is universal for all children. Suppose
that r( j)

0 = r′0 = 0 for j = 1, . . . ,k.
Suppose the inter-arrival time Ti ≥ τ for all i. Suppose

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r( j)
α .

Then we will show that the parent node rα′ does not drop
packets. To this end, we only need to prove that

r′i ≤ rα′ , ∀i. (9)

After the first drop, the package length is hi = h(1)i + · · ·+
h(k)i , where

h( j)
i =

 `
( j)
i r( j)

i ≤ r( j)
α ,

`
( j)
i

r( j)
α

r( j)
i

r( j)
i > r( j)

α .

And by definition,

r′i = (1− e−Ti/K)
hi

Ti
+ e−Ti/Kr′i−1, 1≤ i≤ n.

We now recursively prove Eq. (9).
(i) First let i = 1.
We will use the following inequality to prove Eq. (9):

(1− e−T1/K)
h( j)

1
T1
≤ r( j)

α , ∀ j. (10)

On the one hand, if Eq. (10) is true, we have

r′1 = (1− e−T1/K)
∑

k
j=1 h j

1

T1
≤

k

∑
j=1

r j
α ≤ rα′ ,

which implies Eq. (9) for i = 1.

On the other hand, recall r( j)
1 = (1− e−T1/K)

`
( j)
1
T1

, we then
prove Eq. (10) as following:

1. If r( j)
1 < r( j)

α , then h( j)
1 = `

( j)
1 , thus

(1− e−T1/K)
h( j)

1
T

= (1− e−T1/K)
`
( j)
1
T

= r( j)
1 ≤ r( j)

α .

2. If r( j)
1 ≥ rα, then h( j)

1 = `
( j)
1

r( j)
α

r( j)
1

, thus

(1− e−T1/K)
h( j)

1
T1

= (1− e−T1/K)
`
( j)
1
T1

r( j)
α

r( j)
1

= r( j)
α .

Thus Eq. (10) holds.
(ii) Now suppose that r′i−1 ≤ rα′ .
We will use the following inequality to prove our claim:

(1− e−Ti/K)
h( j)

i
Ti
≤ r( j)

α , ∀ j. (11)

On the one hand, if Eq. (11) is true, we have

r′i =(1− e−Ti/K)
∑

k
j=1 h( j)

i

Ti
+ e−Ti/Kr′i−1

≤
k

∑
i=1

rα + e−a/Kr′α ≤ r′α,

which implies Eq. (9) for i.
On the other hand, recall

r( j)
i = (1− e−Ti/K)

`
( j)
i
Ti

+ e−Ti/Kr( j)
i−1,

we then prove Eq. (11) as following:
1. If r( j)

i < r( j)
α , then h( j)

i = `
( j)
i , thus

(1− e−Ti/K)
h( j)

i
Ti

=(1− e−Ti/K)
`
( j)
i
Ti

=r( j)
i − e−Ti/Kr( j)

i−1

≤r( j)
i ≤ r( j)

α .

2. If r( j)
i ≥ r( j)

α , then h( j)
i = `

( j)
i

r( j)
α

ri

( j)
, thus

(1− e−Ti/K)
h( j)

i
Ti

=(1− e−Ti/K)
`
( j)
i
Ti

r( j)
α

r( j)
i

=(r( j)
i − e−Ti/Kr( j)

i−1)
r( j)

α

r( j)
i

≤r( j)
i

r( j)
α

r( j)
i

= r( j)
α .

Thus Eq. (10) holds. By (i) and (ii) and mathematical induc-
tion our proof is finished.
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