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Abstract—In a software defined network (SDN), the control
plane needs to frequently collect flow statistics measured at the
data plane switches for different applications, such as traffic
engineering, flow re-routing, and attack detection. However,
existing solutions for flow statistics collection may result in large
bandwidth cost in the control channel and long processing delay
on switches, which significantly interfere with the basic functions
such as packet forwarding and route update. To address this
challenge, we propose a Cost-Optimized Flow Statistics Collec-
tion (CO-FSC) scheme using wildcard-based requests. We prove
that the CO-FSC problem is NP-Hard and present a rounding-
based algorithm with an approximation factor f, where f is the
maximum number of switches visited by each flow. Moreover, our
CO-FSC problem is extended to the general case, in which only
a part of flows in a network need to be collected. The extensive
simulation results show that the proposed algorithms can reduce
the bandwidth overhead by over 41% and switch processing
delay by over 45% compared with the existing solutions.

Index Terms—Software Defined Networks, Flow Statistics Col-
lection, Cost, Wildcard, Approximation.

1. INTRODUCTION

A typical SDN consists of a logical controller in the control
plane and a set of switches in the data plane [1]. The controller
monitors the network and determines the forwarding path of
each flow. The switches perform packet forwarding and traffic
measurement for flows based on the rules installed by the
controller. Since the controller is able to provide centralized
control for each flow, an SDN can help to implement fine-
grained management and improve the network resource uti-
lization compared with traditional networks [2].

To explore full advantages of centralized control, an accu-
rate global view of flow traffic is instrumental to various appli-
cations, such as traffic engineering, QoS routing, and network
attack detection. For example, if the controller performs flow
routing without accurate flow traffic knowledge, it will often
result in lower throughput or load imbalance. With an accurate
global view of flow traffic, it helps to improve the route
QoS [2] [3], such as maximum throughput, low latency, and
high reliability. As another application example, some security
attacks, e.g. DDoS [4] [5], are often detected by analyzing the
changes of flow traffic. Accurate flow statistics also help to
detect the attacks and protect the network. Therefore, it is of
vital importance to collect accurate flow statistics.
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In an SDN, switches are able to measure different per-flow
traffic statistics, including packets, bytes or duration, through
flow entries. To allow the controller to obtain traffic statistics
information, OpenFlow [6] specifies two different approaches
for flow statistics collection (FSC) from the switches.! One is
the push-based mechanism [11]. The controller learns active
flows and their statistics by passively receiving reports from
the switches. However, several factors limit its application
in practice. First, it needs some additional requirements
on both hardware and software for the push-based FSC,
such as counters and comparators to support report triggers
[11]. Moreover, different from OpenFlow’s specification, most
commodity switches do not inform the controller about the
measurement of a flow until the flow entry times out. Thus,
these switches do not support the push-based flow statistics
collection. Second, even though the push-based collection is
feasible on SDN switches, when the traffic varies dynamically,
the switches will be frequently triggered and send massive
number of measurement reports to the controller, causing large
cost of control channel bandwidth [12] and the controller’s
CPU resource [13]. The other is the pull-based method:
the controller just sends a Read-State message (also called
FSC request) to retrieve the flow statistics from a switch.
Since this mechanism needs no additional requirement on
both hardware and software for switches and can control the
number of measurement reports, it has been widely used in
SDN applications [13] [14] [15]. In this work, we focus on
the pull-based FSC method.

Due to flow dynamics, timely collection of flow statistics
in an SDN is required for various applications such as traffic
engineering [16]. There are two main schemes of pull-based
flow statistics collection, per-flow collection [14] [17] and per-
switch collection [13] [15]. However, we demonstrate that
both two schemes may lead to massive cost of the control
channel bandwidth and long processing delay on the switches,
especially in dynamic networks. This cost of the control
channel and switches will significantly interfere with basic
functions such as packet forwarding and route update.

'Note that FSC is different from the flow traffic measurement problem in
SDNss [7] [8] [9] [10], which studies how switches derive flow statistics. FSC
focuses on how switches report the collected flow statistics to the controller.
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For per-flow collection, the controller sends a request to a
switch for collecting the traffic statistic of exactly one flow.
When the controller requires to collect statistics of many
flows, it may generate a large number of FSC requests on each
switch. These requests will compete with control messages,
e.g., rule setup and update, for the downlink bandwidth of the
control channel.? Hence with more FSC requests, the rule
setup and update messages, serving the fundamental SDN
tasks, may be delayed, lost, or disordered [11], resulting in
data plane faults or inconsistency.

For per-switch collection, the controller sends a request to
collect the traffic statistics of all flow entries from a switch.
This scheme brings two main disadvantages: 1) It may lead
to unacceptable delay. For example, from the experiments on
the HP ProCurve 5406zl switch, it takes about one second
to collect traffic statistics of about 5600 flows, even when
there is no traffic load on the switch [11]. Ordinary packet
forwarding experiences significantly lower throughput during
this period. Moreover, one second is still too long for many
flow schedulers such as Hedera [16] to conduct accurate
routing optimization. 2) It may lead to uplink congestion of the
control channel because many flow statistics that have no need
to collect will also be frequently reported to the controller.
Consider the case that only a small part of flows have varied
transmission rate, frequent FSC of all flows is obviously a
significant waste of uplink bandwidth. For example, it takes 96
bytes for statistics of each flow entry specified by OpenFlow
1.3 [6]. Then the statistics for 16K exact-matched rules on
a 5406zl switch would cost 1.53MB. Setting the FSC rate
as twice per second would require 24.6Mbps bandwidth on
a control link for only one switch. The massive traffic on
control links may increase the delay and loss ratio of control
commands.

Therefore, it is an urgent need to design a new solution of
FSC with lower control channel and switch cost, so that basic
functions on switches will be less interfered. Our solution
is motivated by the following considerations. To avoid long-
delay collection on some switches and massive traffic load
on control links, we expect to distribute the FSC among
all switches. On each switch only the traffic statistics of a
subset of flows will be collected. We implement the fast and
selective FSC to collect a subset of flows on a switch using
the wildcard-based FSC request, which can be successfully
implemented using OpenFlow 1.3. The controller will send
FSC requests, each of which contains one wildcard rule, to
switches. On the switch only flows matching the wildcard rule
will be collected and reported to the controller. We design
algorithms to minimize the maximum bandwidth/delay cost
among all switches and extend our solutions to partial FSC,
where only a subset of flows (not all flows) in the network
are collected. The main contributions of this paper are:

1) We propose the cost-optimized flow statistics collec-
tion (CO-FSC) problem, prove its NP-Hardness, and

2We use “downlink” to denote the control channel from the controller to
switches and “uplink” to denote that from switches to the controller.

present a rounding-based algorithm, called R-FSC. R-
FSC achieves the approximation factor of f, where f is
the maximum number of switches visited by each flow
in a network. Moreover, a primal-dual-based algorithm
with lower time complexity is also presented.

2) We extend CO-FSC to the cost-optimized partial flow
statistics collection (CO-PFSC) problem, and design a
rounding-based algorithm for this problem. The approxi-
mation factor of the proposed algorithm is also analyzed.

3) The simulation results show that our algorithms help to
reduce the bandwidth overhead by over 41% and switch
processing delay by over 45% compared with the existing
FSC solutions. Moreover, our partial FSC algorithm
reduces the cost by 52% compared with FSC while
preserving almost the similar application performance.

The rest of this paper is organized as follows. Section II for-
malizes the CO-FSC problem. We propose an approximation
algorithm and a primal-dual-based algorithm for CO-FSC in
Section III. Section IV designs a rounding-based algorithm for
CO-PFSC, and analyzes its approximation performance. We
report our simulation results in Section V. We review related
work in Section VI and conclude the paper in Section VIIL.

II. PRELIMINARIES

In this section, we introduce the network model and for-
malize the CO-FSC problem.

A. Network and Flow Models

An SDN typically consists of a logically-centralized con-
troller and a set of switches, V = {vq, ..., v, }, with n = |V].
These switches comprise the data plane of an SDN. Thus,
the network topology from a view of the data plane can
be modeled by G = (V,E), where E is the set of links
connecting switches. Besides the data plane links, there is
a set of links serving the control channel connecting the
switches and the controller. Note that the controller may be a
cluster of distributed controllers [18], which help to balance
the overhead among these controllers. Since the metric we
evaluate is per-switch bandwidth/delay cost, we assume that
there is only one controller for simplicity of presentation.

Match Fields ‘ Priority ‘Counters |Instructions‘ Timeouts ‘Cookie‘ Flags ‘

Fig. 1: Illustration of a Standard Flow Entry in a Flow Table.

Each switch has a flow table that performs packet forward-
ing and traffic measurement. A flow table consists of a certain
number of flow entries (also called as rules). A standard flow
entry, specified by OpenFlow 1.3 [6], is illustrated in Fig.
1. The match fields and priority together identify a unique
entry in the flow table, and the switch measures traffic in the
counters field. When a packet arrives at a switch, the header
packet will be examined. If there is at least one flow entry that
matches the packet, this switch picks the entry with the highest
priority and performs the action specified by the instruction
field of the entry. Otherwise, the switch reports the header
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packet to the controller, which shall determine the forwarding
path for this flow and setup a sequence of rules to the switches
on the path.

B. Advantages of FSC Using Wildcard Requests

Comparing with the previous pull-based FSC methods,
wildcard-based FSC has two main advantages. First, using
wildcard, the controller can collect statistics of many flows,
not just one flow, per request. Thus, the wildcard method
can significantly reduce the number of requests and switch
overhead compared with per-flow collection method. Second,
using wildcard, it is feasible to collect statistics of a subset
of flows from a switch. Thus, the wildcard solution is able to
distribute the FSC overload among all switches, which helps to
reduce the switch cost compared with the per-switch method.

C. Cost-Optimized Flow Statistics Collection (CO-FSC)

Under the general SDN framework, switches report the
header packet of each new-arrival flow to the controller.
Thus, it is reasonable to assume that the controller knows
the existing flows in a network, denoted by I' = {~1, ..., Vi }
with m = |I'|. Since the forwarding path for each flow is
determined by the controller, we also know the flow set,
denoted by I';, that passes through each switch v;. For a flow,
if its traffic statistic is gathered, the controller knows its actual
number of packets (or traffic intensity). We say that this flow is
covered. As the traffic statistic of some flow does not change,
this flow has terminated, and the controller will delete the
corresponding entry of this flow, and update the current flow
set I

Assume that there is a set of wildcards, denoted by R =
{r1,r2,...,7¢}, with ¢ = |R|. For example, a natural way for
setting wildcards is as follows: each wildcard r; only specifies
the destination v;, and can match all the sources. When the
controller sends a Read-State command with wildcard r; to
switch v;, or we say that wildcard r; is applied on switch
v;, the switch assembles the flow entries matching with this
wildcard into a reply packet, and sends to the controller. Under
this case, assume that the covered flow set is denoted by
I/, From this example, the wildcard rules often satisfy the
following two features: (1) The completeness feature, that is,
UTJ_eR FZ =TI, Yv; € V. (2) The mutual exclusion feature,
that is, 7' N 172 = &, Vr;, #rj, Yo, € V. ,

When wildcard r; is applied on switch v;, a flow set I} will
be covered/collected, and the cost on switch v; is denoted by
¢(I'7). The cost function ¢(I'Y) is usually defined as ¢; - |[I'}|+
c9, where ¢ and co are constant and determined by different
performance metrics, such as bandwidth or delay costs.

e We consider the bandwidth cost as the total bandwidth

for FSC of a flow set I'). As specified in Openflow v1.3
[6], the bandwidth cost for statistics collection of a set I"/
consists of two parts: (1) the request packet, whose length
is 122 bytes; (2) the reply packet, whose length depends
on the number of covered flows in I']. It is expressed as
In + 1y - |I‘Z , where [;, is the length of header packet,
and [y is the length for each flow entry, respectively.

According to [15] [6], I;, and [; are 78 bytes and 96
bytes, respectively. Thus, the bandwidth cost is modeled
as ¢(I'}) = 96 - |I"/| 4 200 with unit byte.

o We consider the delay cost ¢(I'}) as the delay for statistic-
s collection of a flow set I'Y. By testing on the HP switch
[11], with the increasing number of flows, the delay for
flow statistics collection is almost linearly increasing, and
the increase rate is about % = 0.18ms/flow. When we
test on our H3C switch, it takes about 1.4ms and 21ms to
collect statistics of one flow and 100 flows using the per-
flow and per-switch collection interfaces, respectively.
The increase rate is about 0.198ms/flow. Combining
the above testing results, the delay cost for I/ can be
approximately modeled as ¢(I'J) = 0.19 - |[I'7] + 1.21
with unit ms.

When an FSC event is triggered, the controller will send Read-
State commands, each of which contains a wildcard rule, to
different switches, so that all the flows can be covered. We
should note that the controller may send several commands to
one switch per FSC event. As a result, the cost on switch v; is
denoted by c(v;). Our objective is to minimize the maximum
cost among all the switches, that is, min max{c(v;),1 <i <
n}, so that no performance bottleneck will happen in SDNs.

Accordingly we formalize the CO-FSC problem as follows:

min A
> er >, Yy, €T
St.qcw) =%, e <\, Yo, €V o
x! €{0,1}, Vr; € R

where xz denotes whether the controller will send a Read-
State command with wildcard r; to switch v; or not. The first
set of inequalities denotes that each flow will be covered. The
second set of inequalities means that the total cost on each
switch v; should not exceed A. The objective is to minimize
the maximum cost on all the switches (or to achieve the cost
balancing on switches), that is, min .
Theorem 1: The CO-FSC problem is NP-hard.

We can prove the NP-hardness by showing that the unrelated
processor scheduling problem [19] is a special case of CO-
FSC. Due to limited space, we omit the detailed proof here.

III. ALGORITHM DESIGN OF CO-FSC

Due to the hardness of CO-FSC, we first design an approx-
imation algorithm using the rounding method for this problem
(Section I1I-A), and give performance analysis (Section I1I-B).
Then, we present an algorithm based on primal-dual with
lower time complexity (Section III-C). We also discuss an
application of our FSC algorithms (Section III-D).

A. A Rounding-Based Algorithm for CO-FSC

This section develops a rounding-based algorithm, called R-
FSC, to solve the CO-FSC problem. The proposed algorithm
consists of two main steps. As CO-FSC is an NP-Hard prob-
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lem, the first step will relax the integer program formulation
to a linear program as Eq. (2).
~ min A
Z%erg l‘g >1, Yy, €T
St < c(v;) = ereﬂ .rzc(FZ) <A Yy eV 2)
xz >0, vr; € R

We can solve Eq. (2) in polynomial time, and obtain the
fractional solution, denoted by z. In the second step, the
fractional solution will be rounded to the 0-1 solution for flow
statistics collection. The set of uncovered flows is denoted
by I'*, which is initialized as all flows in I'. We arbitrarily
choose an uncovered flow, denoted by +, from set I'“. Then,
the algorithm chooses a flow set Fg, whose E{ _is maximum
among all these sets containing flow 7, and set Z7 = 1. That s,
the controller will send a Read-State command with wildcard
rj to switch v;. Moreover, we update I'* = I'* — I'/. The
algorithm will terminate until all flows are covered. The R-
FSC algorithm is described in Alg. 1.

Algorithm 1 R-FSC: Rounding-based FSC
1: Step 1: Solving the Relaxed CO-FSC Problem
2: Construct the relaxed problem as Eq. (2)
3: Obtain a fraction solution =
4: Step 2: Rounding to 0-1 Solution
5: T =T
6
7
8

: while I'* #£ © do
Arbitrarily choose an uncovered flow
Choose a flow set I', whose Z7 is maximum among
all these sets containing flow v, and set Z/ = 1
9. I“=Trv-T/

B. Performance Analysis

We analyze the approximate performance of the proposed
algorithm. In the second step, we arbitrarily choose an uncov-
ered flow «. Let I'7 denote all the sets that contain this flow.
By the second feature of wildcard rules, |I'7| < f, where f is
the maximum number of switches visited by each flow. Since

each flow v will be covered, ngem Ef > 1. Assume that a

flow set Ff is chosen in some iteration. It follows if > %

After solving the linear program in the first step of the
R-FSC algorithm, we derive a fractional solution Z and an
optimal result A for the relaxed CO-FSC problem. According
to the algorithm description, the final cost of switch v; is:

(v =D T ell))
S DNI E A RN EP 3

Thus, we can conclude that
Theorem 2: The R-FSC algorithm can achieve the f-
approximation for the CO-FSC problem.

C. A Lower-Complexity Algorithm Using Primal-Dual

When a statistics collection event is triggered, we expect
that the controller can immediately determine the solution for

Algorithm 2 FSC-PD: FSC based on Primal-Dual
T =T
2: for each switch v; € V' do
3:  Compute p; by Eq. (6)
while [T%| > 0 do _
for each uncovered flow set I"} do .
Increase xj, for each uncovered flow 7, to value 67,
so that 37 cpy Xk = pi - c(T7)
7. Choose a flow set F{ with the minimum value 65 among
all the uncovered sets
for each flow v, € Fg —I'" do
: Xk =0
1. I*=r“-T7

A A

FSC. The R-FSC algorithm needs to solve the linear program
of Eq. (2). Since the number of variables in Eq. (2) mainly
depends on the number of flows in an SDN, it may contain a
large number of variables for a large-scale network, and it is
rather costly in practice to solve such a linear program. Thus,
this section designs a primal-dual-based algorithm with lower
time complexity for CO-FSC. The primal-dual version of Eq.
(2) is given in Eq (4), in which two sets of variables x and p
denote the first and second sets of constraints in Eq. (2).

m
max E k
k=1 X

> erd Xe — pi - c(T]) <0, Vi,j
St 4> i <1, (4)

According to Eq. (4), we design the FSC-PD algorithm
for the CO-FSC problem. At the beginning, the algorithm
initializes a variable, I'*, which denotes the uncovered flow
set. To maximize the objective function in Eq. (4), we expect
that each variable xj can almost grow in line to a value 0.
By the first set of inequalities of Eq. (4), we have

- < (T
Z"/k el Xk Zr] ER Z’ykGFZ Xk = er ER Hi C(P‘)S
, &)
For simplicity, let g(v;) be 3, . c(I'}). As we consider
the critical case, it follows that § ~ “"g(”"), where n; is
the number of flows through switch v;. Combining with the

second inequality of Eq. (4), we set each variable p; as
N4

g(vi)
i = 2 ©6)
Zviev g(vi)
For ease description, if there is an uncovered flow in set
I/, this set is accordingly uncovered. The algorithm mainly
comprises a group of iterations. In each iteration, for each
uncovered flow set I'/, the algorithm increases x;, for each
J _ J
uncovered flow 7, to value 67, so that Z«/ker,{ Y& = m.c(l"i ).

We then choose a minimum value, denoted by (53- , which
means that Fg will be chosen for flow statistics collection,
or wildcard r; will be applied on switch v;. We update the
variable x, for each flow 7, € I'Y — T as x, = 7. If all the
flows are covered, the algorithm terminates. Otherwise, we
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continue a new iteration. The FSC-PD algorithm is described
in Alg. 2.

Theorem 3: The time complexity of FSC-PD is O(mngqf),
where m, n, ¢ and f are the number of flows, the number
of switches, the number of wildcard rules, and the maximum
number of switches visited by each flow in a network.

Proof: The algorithm first takes O(m f) to initialize each
variable f;, for all flows on each switch will be processed.
Since there are n switches and ¢ wildcard rules, the algorithm
consists of O(ng) iterations at most. In each iteration, the
algorithm computes the value &; for each uncovered flow set
I/, which takes a time complexity of O(mf). Moreover, the
algorithm will cost a time complexity of O(m) to update
variable I'*. Then, the total time complexity of the FSC-PD
algorithm is O(mngf). |

D. Flow Re-routing using FSC

After flow statistics collection, we can optimize the network
performance, such as load balancing, by re-routing flows.
The controller determines an elephant flow set, denoted by
¢ = {m,....;Yme}, with m® = |T'¢|. We define one as an
elephant flow that has transferred at least a threshold number
of bytes X. A reasonable value for X is 1-10MB [11]. For
each elephant flow v € I'¢, the controller finds the least
congested path between the flow’s endpoints. To fulfill this
function, we use the Dijkstra method to explore a set of
the shortest paths of each flow. The algorithm chooses one
with the least congestion as a new route of this flow. After
determining new routes for all the flows in ['®, we execute the
route reconfiguration without transient congestion [20].

IV. EXTENDING CO-FSC TO THE GENERAL CASE

This section studies a more general case, called partial
flow statistics collection. We present the definition of the
cost-optimized partial flow statistics collection (CO-PFSC)
problem (Section IV-A), design an approximation algorithm
using the rounding method for this problem (Section IV-B),
and give performance analysis (Section 1V-C).

A. Cost-Optimized Partial Flow Statistics Collection

In an SDN, the controller can know the traffic of each flow
through direct measurement, e.g., by collecting statistics of all
flows in a network. Another way for traffic estimation is to
combine the direct measurement (e.g., statistics collection) and
inference [21]. The controller can infer the traffic of all flows
through statistics information of partial flows (not all flows)
and link load in a network. Thus, statistics collection of partial
flows also benefits for building a global traffic view, with
less cost on switches compared with statistics collection of all
flows. In this section, we present the partial FSC problem, in
which the flow recall ratio is at least a given value 3 € (0, 1].

The CO-PFSC(/3) problem is defined as follows. Similar to
CO-FSC, let I', V, and R denote a flow set, a switch set and
a wildcard set in an SDN, respectively. When we apply the
wildcard r; € R on switch Vi, the controller can obtain the
traffic statistics of a flow set I'/, and its cost is ¢(I'}), which

is defined in Section II-C. The controller will send Read-State
commands with wildcards to different switches, so that at least
B - m flows will be covered, where 3 is the flow recall ratio
requirement, and m is the number of flows in an SDN. The
cost on each switch v; is denoted by c(v;), and we aim to
minimize the maximum cost of all the switches. We give the
formulation of the CO-PFSC(/3) problem as follows.

min A
zi < Ewkerf z, Yy €T
Zwerzkzﬁ'mv )
St 9 c(v;) = Zr;eR zle(M) <N, Vv, €V (@)
zl € {0,1}, Vr; € R
Zk€{071}, Yy €T

where z;. denotes whether the statistics information of flow
7k is collected (z; = 1) or not, m is the number of flows in
a network. The first set of inequalities means that one flow
will be covered, if at least one set I'/ containing this flow
is collected by the controller. The second set of constraints
means that the number of covered flows exceeds [ - m.
The third set of inequalities means that the cost on each
switch should not exceed A. The objective is to minimize the
maximum cost on all the switches, that is, min \.

Note that CO-FSC is a special case of the CO-PFSC(f)
problem, with 8 = 1. Thus,

Theorem 4: The CO-PFSC(3) problem is NP-hard.

B. An Approximation Algorithm for CO-PFSC(3)

We describe a rounding-based algorithm, called R-PFSC,
for partial flow statistics collection. Due to NP-Hardness, the
algorithm constructs a linear program as a relaxation of CO-
PFSC(f). We formulate the following linear program L Ps.

min A

2 < Z%GFZ l, Yy €T
kael‘ 2k > 5 -m,

S.t. Zwen zle(T) <\, Vo, eV (8)
x! >0, Yv; € V.Vr; € R
0<z <1, Yy, €T

By solving the linear program LP,, we assume that the
optimal solution for LP, is denoted by z, and the optimal
result is denoted by A. As LP; is a relaxation of the CO-
PFSC(3) problem, ) is a lower-bound result for CO-PFSC(f3).

In the second step, the controller will determine which
wildcard rules will be sent to each switch for partial flow
statistics collection. By solving L P, variable z; denotes the
probability that the statistics information of flow ~; will
be collected. Then, we adapt the second step of R-FSC to
determine the flow statistics collection in our algorithm. The
set of covered flows is denoted by I'“, which is initialized as ®.
We choose an uncovered flow, denoted by 7, with maximum
Z. If Zj is less than f3, the algorithm terminates. Otherwise,
the algorithm chooses a flow set Fg , whose :Ei is maximum
among all these sets containing flow ., and sets z7 = 1. This
means that the controller will send the Read-State command
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with wildcard 7; to switch v;. The algorithm will terminate
until there have /3 - m covered flows in set I'“. The R-PFSC
algorithm is described in Alg. 3.

Algorithm 3 R-PFSC: Rounding-based Partial FSC
1: Step 1: Solving the Relaxed CO-PFSC Problem
2: Construct a linear program in Eq. (8)
3: Obtain the optimal solution = and z
4: Step 2: Determining Flow Statistics Collection
55I°=0;2=1

6: while |I'‘| < 8-m and z > 3 do

7

8

9

Choose an uncovered flow =, with maximum z
z = Zk
if z;, > (8 then
10: Choose a set FZ , whose 3717 is maximum among all
these sets containing the flow ~;, and set z} =1
11: re=rc+r1!

C. Performance Analysis

We first give a famous lemma for performance analysis.
Lemma 5 (Chernoff Bound): Given n independent variables:
T1, T2, ..., Tn, Where Vz; € [0,1]. Let p = E[>°"" | @;]. Then,
n —62 L
Pr {Z z; <(1—eu| < e~ 7", where ¢ is an arbitrarily

i=1
positive value.

Number of Covered Flows Constraint. The R-PFSC
algorithm may not fully guarantee that the number of covered
flows exceeds [ - m. Under this case, one flow ~x, with
Zx > [, should be covered. By the second constraint in Eq.
(8), kael‘ zr > [ - m, so we expect that more flows (e.g.,
- m) will be collected. We will further observe the ratio
of covered flows through extensive simulations in Section
V-B. In the following, we analyze the expected number of
covered flows for a special case, where z;, is a random variable
with uniform distribution from O to 1. Let ¢ denote the
event of solving Eq. (8). Variable Z, denotes whether flow
vk is covered or not. Each flow ~y; will be covered with the
probability of 6, = Pr(zi > S|¢). We compute E(z|p) as
follows:

E(zk|»)
=E(z1, > B) - Pr(zx > Blp) + E(z1 < B) - Pr(zi < Bly)
S g Dy = 2 ©

Combining the second inequality of Eq. (8), it follows

Z'Yker E(Zk|¢) = ZVkEF 5-;% z ﬂ -m. Thus, kael‘ 97‘7 2
B - m. Then, the expected number of covered flows is:
E[Z’Yk el Zk] - Z’Yk er ]E[Zk]
= P > = >0 1
Do Pz Ble) =" _ 6x>p-m  (10)

According to the Chernoff bound in Lemma 5, we have

—028.m

Pr | B < (1 p) Bm] < e 11

rzwerzk_( p)pm| <e (11)

where p is an arbitrarily constant with 0 < p < 1. We make
the following assumption:

—p2%8-m 1
2 < (1— <e " < =
Pr [ZWGF %< (1-p) Bm} <eTTE<S 1)
As a result, we obtain
p > 2y/logn/pm (13)

We have the following lemma

Theorem 6: The R-PFSC algorithm will cover (1 — p)8m
flows at least for statistics collection, with p > 24/logn/fm
under some special situations.

By our analysis, the number of covered flows will hardly
be violated by a factor of 1 — 24/logn/Bm. For example,
let n, m and B be 102, 10° and 0.5, respectively. Obviously,
logn = 10, and we set p = 0.09. In other words, our R-
PFSC algorithm will collect statistics information of at least
0.91 - Bm flows.

Bandwidth/Delay Cost Performance. After the first step
of the R-PFSC algorithm, we derive a fractional solution T
and an optimal result X for the relaxed CO-PFSC(3) problem.
In each iteration of the second step, assume that the selected
uncovered flow is denoted by 7. It follows that z, > 3. If
one flow set Fg is chosen, we know that %{ > % The cost of
switch v; is:

c(vi) = ereR %i 'C(Fg)
<. ,6R§%Z~c<rf> s%i

Thus, it follows
Theorem 7: The cost on each switch will not exceed £
times of the fractional solution by the R-PFSC algorithm.

(14)

V. PERFORMANCE EVALUATION

This section first introduces the metrics for performance
comparison (Section V-A). Then, we evaluate our proposed
algorithms by comparing with the previous methods through
extensive simulations (Section V-B).

A. Performance Metrics and Simulation Setting

This paper mainly cares for bandwidth/delay cost of FSC
for both CO-FSC and CO-PFSC problems. We use the fol-
lowing performance metrics in our numerical evaluation.

1) The maximum bandwidth cost at any time during a run
of simulation. As described in Section II-C, for a flow set
I, its bandwidth cost is defined ¢(I) = 96 - |I'7| + 200
with unit byte.

2) The maximum delay cost on any switch at any time
during a run of simulation. As described in Section II-C,
for a flow set I'/, its delay cost is defined ¢(I'/) =
0.19 - |T7| + 1.21 with unit ms.

3) The algorithm running time. We mainly compare the
running time of R-FSC and FSC-PD, both designed for
the CO-FSC problem, by changing the number of flows.

4) The ratio of covered flows. Given a recall ratio 3, the R-
PFSC algorithm may not fully guarantee that the number
of covered flows exceeds [3-m. The ratio of covered flow
is the number of covered flow by our R-PFSC algorithm
divided by the number of all flows in a network.
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Fig. 2: Maximum Bandwidth Cost vs. Number of Flows for CO-FSC.
Left plot: Topology (a); right plot: Topology (b).
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Fig. 3: Maximum Delay Cost vs. Number of Flows for CO-FSC.
Left plot: Topology (a); right plot: Topology (b).
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Fig. 4: Comparison of Running Time. Left plot: Topology (a); right
plot: Topology (b).

5) The load balancing factor. As an application example, we
regard that the (partial) flow statistics knowledge will
benefit to the efficient routing. To measure the route
efficiency, the load factor of a link is the traffic load
divided by the link capacity. The load balancing factor
is the maximum load factor among all links.

We compare the proposed FSC algorithms with the most-
related, state-of-the-art work of OpenTM [17] and Cemon
[15]. OpenTM and Cemon are typical studies for per-flow
and per-switch statistics collection mechanisms, respectively.
OpenTM tries to determine the switch using the random
method for statistics collection of each flow, so that the
bandwidth/delay cost can be reduced. The objective of Cemon
is to reduce the total bandwidth cost on the controller in an
SDN. The statistics collection of all flows is implemented by
combination of per-switch and per-flow mechanisms.

As described above, there are three different schemes for
flow statistics collection, per-flow, per-switch, and wildcard-
based, respectively. In our SDN platform, the current version
of the H3C S5120-28SC-HI switch only supports the per-
flow and per-switch statistics collection, and we have im-
plemented two methods on the platform using the RESTful
APIs specified by the Opendaylight controller. For example,
to obtain the statistic of a flow, we should specify the values
of parameters, such as switch-id, table-id and flow-id, in the
implementation. Moreover, we have tested the delay for per-
flow and per-switch statistics collection on the H3C switch.
Unfortunately, since our switches do not support the wildcard-
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Fig. 5: Ratio of Covered Flows vs. § By the R-PFSC Algorithm.
Left plot. Topology (a); right plot. Topology (b).
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based collection currently, we have not implemented our
proposed algorithms on hardwares. In the future version,
provided that the hardware can support the wildcard-based
statistics collection, we can easily implement our proposed
algorithms using RESTful API interfaces by adapting our per-
flow and per-switch implementations.

B. Simulation Evaluation

1) Simulation Setting: In the simulations, as running ex-
amples, we select two practical and typical topologies, one
for campus networks and the other for datacenter networks.
The first topology, denoted by (a), contains 100 switches, 200
servers and 397 links from [22]. The second one is a fat-tree
topology [23], which has been widely used in many datacenter
networks. The fat-tree topology has 16 core switches, 32
aggregation switches, 32 edge switches and 192 servers. Due
to capacity constraint of our simulation platform, the capacity
of each link is set as 100Mbps on both topologies. We execute
each simulation 100 times, and average the numerical results.
For the flow size, the authors of [11] have shown that less than
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20% of the top-ranked flows may be responsible for more than
80% of the total traffic. Thus, we allocate the size for each
flow according to this rule.

2) Simulation Results: We run two groups of simulations
to check the effectiveness of our proposed algorithms. The
first set of simulations observes how the number of flows
affects the statistics collection performance, including max-
imum bandwidth cost and maximum delay cost, of different
algorithms on two topologies. From Fig. 2, our proposed
algorithms, both R-FSC and FSC-PD, can significantly reduce
the maximum bandwidth cost compared with both two meth-
ods, especially the per-switch method. That’s because, Cemon
collects the statistics information of all flows on some switch-
es, which leads to higher bandwidth cost on control links
between these switches and the controller. For example, when
there are 1000 flows per server on average, and the collection
period is 1s, our FSC-PD algorithm can reduce the maximum
bandwidth cost from 19Mbps by Cemon to only 6Mbps. Fig. 2
shows that FSC-PD reduces the maximum bandwidth cost by
about 41% and 53% compared with the OpenTM and Cemon
methods, respectively. From Fig. 3, our proposed algorithms
can significantly reduce the maximum delay cost compared
with both per-switch and per-flow collection methods. Note
that, for the per-flow method, frequent collection requests lead
to serious collection delay. Fig. 3 shows that FSC-PD can
reduce the delay cost of all switches by about 52% and 45%
compared with OpenTM and Cemon, respectively. From Figs.
2 and 3, we find that our rounding-based R-FSC algorithm
performs better than the FSC-PD algorithm based on primal-
dual. However, Fig. 4 shows that FSC-PD can save much
more running time compared with R-FSC. More specifically,
the running time of FSC-PD is only about 1/4-1/5 as that of
R-FSC.

The second set of eight simulations observes the different
performance metrics of our R-PFSC algorithm by changing
the parameter 5 on two topologies. In these simulations, there
are 40K flows (i.e., about 200 flows per server) by default in
the network. From Fig. 5, we find that, for a given parameter
3, the ratio of covered flows by our R-PFSC algorithm mostly
exceeds /3, while it is very close to § in some cases, e.g., § =
0.6. This figure shows that our R-PFSC algorithm can satisfy
the flow recall ratio in most situations. From Figs. 6 and 7,
the maximum bandwidth/delay cost of FSC increases when
the flow recall ratio 3 increases. That’s because, with increase
of flow recall ratio, statistics of more flows will be collected,
which results in a higher cost, including bandwidth cost and
delay cost. Both two figures show that the R-PFSC algorithm
with 3 = 0.8 can decrease the maximum bandwidth/delay
cost by about 52% compared with that with g = 1.0.

As an application example, after (partial) FSC, we can re-
route flows using the routing method, as described in Section
III-D, for better network performance. There are 40K flows in
the simulation. We observe the route performance by changing
the parameter 3. Fig. 8 shows that the load-balancing factor
will be reduced with a larger flow recall ratio S (or with
statistics knowledge of more flows). For example, R-PFSC

at 8 = 0.8 can reduce the cost 52% compared with that at
£ = 1.0, with increased load-balancing factor only about 5%.

VI. RELATED WORKS

Recently, SDN [1] has become an emerging technology
for future networks. Most previous works, e.g., [2] [24],
assume that the controller knows traffic intensity of each flow
to provide efficient route selection in a network. However,
the flow traffic intensity is often unknown in advance in
many applications, and dynamically changed during flow
forwarding.

A related problem with our statistics collection is the flow
traffic measurement, and the comprehensive survey can be
found in [25]. The previous traffic measurement solutions
are mostly implemented through the sampling technique.
OpenSample [8] leveraged sFlow packets [26] to provide near-
real-time measurements of both network load and individual
flows. Yu et al. [7] used a sketch-based measurement library
to automatically configure and manage resources for measure-
ment activities. The similar sketch-based traffic monitoring
method was also studied in [27]. The authors of [10] allocated
resources for sketch-based measurement tasks to ensure a
user-specified minimum accuracy. Some works [21] studied
the rule placement and traffic measurement for an SDN. All
the above methods often estimate the flow size with less
overhead, which is different from our statistics collection.
Note that, our FSC solutions can be combined with traffic
measurement methods for different applications.

In a general SDN, each switch counts the traffic of each
flow through the counter field in the flow entry. OpenFlow
[6] specified two different approaches, push-based and pull-
based, for flow statistics collection.

The first one is the push-based collection. FlowSense [28]
utilized the Packetln and FlowRemoved messages, which
were sent by switches to the controller when a new flow
come in or upon the expiration of a flow entry. Devoflow
[11] extended OpenFlow with a new push-based statistics
collection mechanism for identifying the elephant flows and
re-routing them. However, the push-based mechanism required
additional hardware support on switches, or some modification
on the packet head (such as sFlow [26]). These requirements
might not be fully supported by most commodity switches,
which limited the application of the push-based mechanism.

The second one is the pull-based collection, which is simple
and has been widely used in many SDN applications. OpenTM
[17] was designed for traffic matrix estimation using simple
logic for querying flow table counters. The logic was based
on keeping statistics for each active flow in the network. The
information about active flows was pulled from the switches
periodically. OpenNetMon [14] presented an approach and
open source software implementation to monitor end-to-end
QoS metrics of per-flow, especially throughput, delay and
packet loss, in OpenFlow networks. The authors used an adap-
tive fetching mechanism to pull data from switches where the
rate of the queries increased when flow rates differ between
samples and decreased when flows stabilized. PayLess [29]
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focused on the tradeoff between accuracy and network over-
head. It provided a flexible RESTful API for flow statistics
collection at different aggregation levels. The key advantage
of PayLess was that it used an adaptive statistics collection
algorithm to attain accurate information in real-time without
incurring significant network overhead. The most related
works with ours were FlowCover [13] and CeMon [15], which
proposed a low-cost per-switch monitoring scheme to support
various network management tasks. As a collection event was
triggered, the controller collected the statistics information
of all the flows in a network. Some applications, e.g., flow
re-routing [11], require that the pull-based statistics should
be collected frequently enough, which may result in more
serious per-switch cost, preventing from packet forwarding
on switches.

VII. CONCLUSION

In this paper, we have studied the efficient FSC mechanisms
to reduce the bandwidth cost and processing delay in an
SDN. We have proposed to use wildcard-based FSC to avoid
the disadvantages of both per-flow and per-switch FSC, and
presented several approximation algorithms for both FSC
and partial FSC problems. The extensive simulation results
show high efficiency of our proposed algorithms. Moreover,
partial FSC can significantly reduce the bandwidth/delay cost
compared with FSC. Since the delay on the switch may
depend on its traffic load, in the future, we will study more
practical delay model for flow statistics collection.
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