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Abstract—1In a software-defined network (SDN), the control
plane needs to frequently collect flow statistics measured at
the data plane switches for different applications, such as
traffic engineering, QoS routing, and attack detection. However,
existing solutions for flow statistics collection may result in
large bandwidth cost in the control channel and long process-
ing delay on switches, which significantly interfere with the
basic functions, such as packet forwarding and route update.
To address this challenge, we propose a cost-optimized flow
statistics collection (CO-FSC) scheme and a cost-optimized par-
tial flow statistics collection (CO-PFSC) scheme using wildcard-
based requests, and prove that both the CO-FSC and CO-PFSC
problems are NP-hard. For CO-FSC, we present a rounding-
based algorithm with an approximation factor f, where f is
the maximum number of switches visited by each flow. For
CO-PFSC, we present an approximation algorithm based on
randomized rounding for collecting statistics information of a
part of flows in a network. Some practical issues are discussed
to enhance our algorithms, for example, the applicability of our
algorithms. Moreover, we extend CO-FSC to achieve the control
link cost optimization FSC problem, and also design an algorithm
with an approximation factor f for this problem. We implement
our designed flow statistics collection algorithms on the open
virtual switch-based SDN platform. The testing and extensive
simulation results show that the proposed algorithms can reduce
the bandwidth overhead by over 39% and switch processing delay
by over 45% compared with the existing solutions.

Index Terms—Flow statistics collection, cost, delay, wildcard,
rounding.
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I. INTRODUCTION

ATYPICAL SDN consists of a logical controller in the
control plane and a set of switches in the data plane [2].
The controller monitors the network and determines the for-
warding path of each flow. The switches perform packet
forwarding and traffic measurement for flows based on the
rules installed by the controller. Since the controller is able to
provide centralized route/management control for each flow,
an SDN can help to implement fine-grained management
and improve the network resource utilization compared with
traditional networks [3].

To explore full advantages of centralized control, an accu-
rate global view of flow traffic is instrumental to various
applications, such as traffic engineering, QoS routing, network
attack detection, and network management. For example, if the
controller performs flow routing without accurate flow traffic
knowledge, it will often result in lower throughput or load
imbalance. With the help of an accurate global view of flow
traffic, it can improve the route QoS [3]-[5], such as maximum
throughput, low latency, and high reliability. As another appli-
cation example, some security attacks, e.g., DDoS [6], [7],
are often detected by analyzing the changes of flow traffic.
Accurate flow statistics also help to detect the attacks and
protect the network. Therefore, it is of vital importance to
collect accurate flow statistics.

In an SDN, switches are able to measure different per-flow
traffic statistics, including packets, bytes or duration, through
flow entries. To allow the controller to obtain traffic statistics
information, OpenFlow [8] specifies two different approaches
for flow statistics collection (FSC) from the switches.! One
is the push-based mechanism. The controller learns active
flows and their statistics by passively receiving reports from
the switches. However, several factors limit its application in
practice. First, the existing push-based mechanism does not
inform the controller about the behavior of a flow before
the entry times out, as a result, push-based statistics are not
currently useful for flow scheduling. Second, to achieve effi-
cient flow scheduling, DevoFlow [13] needs some additional
requirements on both hardware and software for the push-
based FSC, such as counters and comparators to support report
triggers. But most commodity switches do not support the
statistics report triggers. Third, even though the push-based

'Note that FSC is different from the flow traffic measurement problem in
SDNss [9]-[12], which studies how switches derive flow statistics. FSC focuses
on how switches report the collected flow statistics to the controller.
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collection is feasible on SDN switches, when the traffic varies
dynamically, the switches will be frequently triggered and
send massive number of measurement reports to the controller,
causing large cost of control channel bandwidth [14] and the
controller’s CPU resource [15]. The other is the pull-based
method: the controller just sends a Read-State message (also
called FSC request) to retrieve the flow statistics from a
switch. Since this mechanism needs no additional requirement
on both hardware and software for switches and can control
the number of measurement reports, it has been widely used
in SDN applications [15]-[17]. In this work, we focus on the
pull-based FSC method.

Due to flow dynamics, timely collection of flow statis-
tics in an SDN is required for various applications such
as traffic engineering [18]. There are two main schemes of
pull-based FSC, per-flow collection [16], [19] and per-switch
collection [15], [17]. However, we demonstrate that both two
schemes may lead to massive cost of the control channel band-
width and long processing delay on the switches, especially
in dynamic networks. This cost of the control channel and
switches will significantly interfere with basic functions such
as packet forwarding and route update [20].

For per-flow collection, the controller sends a request to
a switch for collecting the traffic statistic of exactly one
flow. In some situations, the wildcard flow entries may be
installed, which will be discussed in Section III-C. When
the controller requires to collect statistics of many flows,
it may generate a large number of FSC requests on each
switch. These requests will compete with control messages,
e.g., rule setup and update, for the downlink bandwidth of
the control channel.? Hence with more FSC requests, the rule
setup and update messages, serving the fundamental SDN
tasks, may be delayed, lost, or disordered [13], resulting in
data plane faults or inconsistency.

For per-switch collection, the controller sends a request
to collect the traffic statistics of all flow entries from a
switch. This scheme may lead to unacceptable collection delay.
For example, from the experiments on the HP ProCurve 540621
switch, it takes about one second to collect traffic statistics
of about 5600 flows, even when there is no traffic load
on the switch [13]. Ordinary packet forwarding experiences
significantly lower throughput during this period. Moreover,
one second is still too long for many flow schedulers such
as Hedera [18] to conduct accurate routing optimization. For
the cheap and less capable network equipment, it may lead to
uplink congestion of the control channel because many flow
statistics that have no need to collect will also be frequently
reported to the controller. Consider the case that only a small
part of flows have varied transmission rate, frequent FSC of
all flows is obviously a significant waste of uplink bandwidth.
For example, it takes 96 bytes for statistics of each flow entry
specified by OpenFlow 1.3 [8]. Then the statistics for 16K
exact-matched rules on a 5406z1 switch would cost 1.54MB.
Setting the FSC rate as twice per second would require
24.6Mbps bandwidth on a control link for only one switch.

2We use “downlink” to denote the control channel from the controller to
switches and “uplink” to denote that from switches to the controller.
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The massive traffic on control links may increase the delay
and loss ratio of control commands.

Therefore, it is an urgent need to design a new solution of
FSC with lower control channel and switch cost, so that basic
functions on switches will be less interfered. Our solution is
motivated by the following considerations. To avoid long-delay
collection on some switches and massive traffic load on control
links, we expect that on each switch only the traffic statistics
of a subset of flows (not all flows in the per-switch collection)
will be collected. We implement the fast and selective FSC
on a switch using the wildcard-based FSC requests, which
can be successfully implemented using OpenFlow 1.3. The
controller will distribute FSC requests, each of which contains
one wildcard rule, to switches. On the switch only flows
matching the wildcard rule will be collected and reported to
the controller. We design algorithms to minimize the maximum
bandwidth/delay cost among all switches and extend our
solutions to partial FSC, where only a subset of flows (not all
flows) in the network are collected. The main contributions of
this paper are:

1) We propose the cost-optimized flow statistics collec-
tion (CO-FSC) and cost-optimized partial flow statis-
tics collection (CO-PFSC) problems, and prove the
NP-hardness.

2) For CO-FSC, we present a rounding-based algorithm,
called R-FSC. The R-FSC algorithm achieves the
approximation factor of f, where f is the maximum
number of switches visited by each flow in a network.
Moreover, a primal-dual-based algorithm with lower
time complexity is also presented.

3) For CO-PFSC, we design a rounding-based algorithm
for this problem, and the approximation factor of the
proposed algorithm is also analyzed.

4) To study the control link cost for flow statistics col-
lection, we extend the above switch cost optimization
problems, and define the link cost-optimized flow sta-
tistics collection (LCO-FSC) problem, and present two
approximation algorithms for the LCO-FSC problem.

5) We implement the proposed flow statistics collection
methods on an SDN platform using Open vSwitch [21].
The testing and simulation results show that our algo-
rithms help to reduce the bandwidth overhead by over
39% and switch processing delay by over 45% compared
with the existing FSC solutions. Moreover, our partial
FSC algorithm reduces the cost by 52% compared with
FSC while preserving almost the similar application
performance.

II. PRELIMINARIES
In this section, we first introduce the network and flow mod-
els in an SDN. Then, we define the cost-optimized flow
statistics collection (CO-FSC) and cost-optimized partial flow
statistics collection (CO-PFSC) problems, respectively.

A. Network and Flow Models

An SDN typically consists of a logically-centralized con-
troller and a set of switches, V' = {vy,...,v,}, withn = |V|.
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Fig. 1. Tllustration of a standard flow entry in a flow table.

These switches comprise the data plane of an SDN. Thus,
the network topology from a view of the date plane can
be modeled by G = (V,E), where E is the set of links
connecting switches. Besides the data plane links, there is a set
of links serving the control channel connecting the switches
and the controller. Note that the controller may be a cluster
of distributed controllers [22], [23], which help to balance
the overhead among these controllers. Since the metric we
first evaluate is per-switch bandwidt/delay cost, we assume
that there is only one controller for simplicity of presentation.
It should be noted that we will extend the per-switch cost
optimization to the link cost optimization in Section IV.

Each switch has a flow table that performs packet forward-
ing and traffic measurement. A flow table consists of a certain
number of flow entries (also called rules). A standard flow
entry, specified by OpenFlow 1.3 [8], is illustrated in Fig. 1.
The match fields and priority together identify a unique entry
in the flow table, and the switch measures traffic in the
counters field. When a packet arrives at a switch, the header
packet will be examined. If there is at lease one flow entry that
matches the packet, this switch picks the entry with the highest
priority and performs the action specified by the instruction
field of the entry. Otherwise, the switch reports the header
packet to the controller, which shall determine the forwarding
path for this flow, and setup a sequence of rules to the switches
on the path.

B. Advantages of FSC Using Wildcard Requests

Comparing with the previous pull-based FSC methods,
wildcard-based FSC has two main advantages. First, using
wildcard requests, it is feasible to collect statistics of a subset
of flows from a switch. Thus, the wildcard solution is able
to distribute the statistics collection overhead of all flows
among all switches, which helps to reduce the switch cost
compared with the per-switch method. Second, using wildcard,
the controller can collect statistics of many flows, not just one
flow, per request. Thus, the wildcard method can significantly
reduce the number of requests and switch overhead compared
with per-flow collection method.

C. Cost-Optimized Flow Statistics Collection (CO-FSC)
Under the general SDN framework, switches report the
header packet of each new-arrival flow to the controller.
Thus, it is reasonable to assume that the controller knows the
existing flows in a network, denoted by I' = {~1,...,vm},
with m = |['|. Since the forwarding path for each flow is
determined by the controller, we also know the flow set,
denoted by T';, that passes through each switch v;. For a flow,
if its traffic statistic is gathered, the controller knows its actual
number of packets (or traffic intensity). We say that this flow is
covered. As the traffic statistic of some flow does not change,
this flow has terminated, and the controller will delete the
corresponding entry of this flow, and update the current flow
set I'. For simplicity, we assume that each switch is directly
connected to a controller. We will extend this assumption to

a more general scenario, in which some switches may not be
directly connected with the controller, in Section IV.
Assume that there is a set of wildcards, denoted by
R = {ri,r2,...7q}, with ¢ = |R|. For example, a natural
way for setting wildcards is as follows: each wildcard r;
only specifies the destination v;, and can match all the
sources. When the controller sends a Read-State command
with wildcard r; to switch v;, or we say that wildcard r; is
applied on switch v;, the switch assembles the flow entries
matching with this wildcard into a reply packet, and sends to
the controller. Under this case, assume that the covered flow
set is denoted by I'/. From this example, the wildcard rules
often satisfy the following two features: (1) The completeness
feature, that is, Urj R I‘g =TI, Yv; € V. (2) The mutual

exclusion feature, i.e., I‘{l N I‘{z =&, j1 # jo, Vv, € V.

‘When wildcard r; is applied on switch v;, a flow set

I‘g will be covgzred/collected, and the cost on switch v; is
denoted by ¢(I'7). The cost function ¢(I') is usually defined
as ¢y - |I'Y| 4 c2, where ¢; and co are constant and determined
by different performance metrics, such as bandwidth or delay
costs.

o We consider the bandwidth cost as the total bandwidth
for FSC of a flow set ). As specified in Openflow
v1.3 [8], the bandwidth cost for statistics collection of
a flow set I"} consists of two parts: (1) the request
packet, whose length is 114 bytes; (2) the reply packet,
whose length depends on the number of covered flows
in T, It is expressed as I, + Iy - |I'J|, where [, is the
length of packet header, and Iy is the length for each
flow entry, respectively. According to [8], I, and [; are
74 bytes and 96 bytes, respectively. More specifically,
the length of packet header includes 16 bytes (multipart
request header) and 58 bytes (Ethernet+IP+TCP headers).
The length for each flow entry includes 40 bytes (match
fields for each entry) and 56 bytes (statistics information
for each entry). These parameters have been validated
through our open virtual switch (OVS) platform. Thus,
the bandwidth cost is modeled as ¢(I'}) = 96 - |T"/| + 188
with unit byte. ‘

o We consider the cost ¢(I'}) as the delay for statistics col-
lection of a flow set I'/. By testing on the HP switch [13],
with the increasing number of flows, the delay for flow
statistics collection is almost linearly increasing, and the
increase rate is about % = (0.18ms/flow. When we test
on our H3C switch, it takes about 1.4ms and 21ms to
collect statistics of one flow and 100 flows using the
per-flow and per-switch collection interfaces, respectively.
The increase rate is about 0.198ms/flow. Combining
the above testing results, the delay cost for F_{ can be
approximately modeled as ¢(I'/) = 0.19 - [IY| + 1.21
with unit ms. It should be noted that, the values of two
constant parameters for delay cost may vary with switch
traffic load [13], which will be discussed in Section III-C.

When an FSC event is triggered, the controller will send
Read-State commands, each of which contains a wildcard rule,
to different switches, so that all the flows can be covered. The
controller may send several collection commands to one switch
per FSC event. As a result, the cost on switch v; is denoted
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by c¢(v;). Our objective is to minimize the maximum cost

among all the switches, that is, min max{c(v;),1 < i < n},

so that no performance bottleneck will happen in SDNs.
Accordingly we formalize the CO-FSC problem as follows:

min A
V’yk el
(M) <A, VYo, ev (D
VT']‘ cER

St elv) = Zmen

where x{ denotes whether the controller will send a Read-
State command with wildcard r; to switch v; or not. The
first set of inequalities denotes that each flow will be covered.
The second set of inequalities means that the total cost on
each switch should not exceed \. The objective is to minimize
the maximum cost on all the switches (or to achieve the cost
balancing on switches), that is, min A.

Theorem 1: The CO-FSC problem is NP-hard.

The proof of theorem 1 has been relegated to the
appendix VII.

D. Cost-Optimized Partial Flow Statistics Collection

The CO-FSC problem will collect statistics information
of all flows in a network. In fact, the statistics information
of partial flows is also helpful for some applications. For
example, the controller can know the traffic of each flow
through direct measurement, e.g., by collecting statistics of
all flows in a network. Another way for traffic estimation is
to combine the direct measurement (e.g., statistics collection)
and inference [24]. The controller can infer the traffic of all
flows through statistics information of partial flows (not all
flows) and link load in a network. Thus, statistics collection
of partial flows also benefits for building a global traffic
view, with less cost on switches compared with statistics
collection of all flows. In this section, we present the partial
FSC problem, in which the flow recall ratio is at least a given
value 8 € (0,1].

The CO-PFSC() problem is defined as follows. Similar
to CO-FSC, let I', V, and R denote a flow set, a switch set
and a wildcard set in an SDN, respectively. When we apply
the wildcard r; € R on switch v;, the controller can obtajn
the traffic statistics of a flow set I'/, and its cost is ¢(I'),
which is defined in Section II-C. The controller sends Read-
State commands with wildcards to different switches, so that
at least 3-m flows will be covered, where (3 is the flow recall
ratio requirement, and m is the number of flows in an SDN.
The cost on each switch v; is denoted by c(v;), and we aim
to minimize the maximum cost of all the switches. We give
the formulation of CO-PFSC((3) as follows.

min A

J
Zp < kaer-} x;, Vv €T

Z 2k 2> ﬁ -m,

’WCEF . .
c(?)i) = ereR de(T) <\ v ev ()
z] € {0,1}, Vri e R
Zke{o,l}, Vv, € T

S.t.
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where z;, denotes whether the statistics information of flow
Yk is collected (2, = 1) or not. The first set of inequalities
means that, one flow will be covered, if at least one set I‘g
containing this flow is collected by the controller. The second
set of constraints means that the number of covered flows
exceeds [ - m. The third set of inequalities means that the
cost on each switch should not exceed A. The objective is
to minimize the maximum cost on all the switches, that is,
min A.

Note that CO-FSC is a special case of the CO-PFSC(f)
problem, with 5 = 1. By theorem 1, it follows

Theorem 2: The CO-PFSC(() problem is NP-hard.

III. ALGORITHMS FOR CO-FSC AND CO-PFSC
A. Algorithm Design for CO-FSC

Due to the hardness of CO-FSC, we first design an
approximation algorithm using the rounding method for
this problem (Section III-A.I), and give performance analy-
sis (Section I1I-A.2). Then, we present an algorithm based on
primal-dual with lower time complexity (Section 11I-A.3).

1) A Rounding-Based Algorithm for CO-FSC: This section
develops a rounding-based algorithm, called R-FSC, to solve
the CO-FSC problem. The algorithm consists of two main
steps. As CO-FSC is an NP-Hard problem, the first step will
relax the integer program formulation to a linear program as
Eq. (3).

min A

E ) x{ >1,
YR €T
N J J )

c(v;) = E reR rle(T)) <\, VYo eV ()

@l >0, Vrj e R

V’yk el
S.t.

We can solve Eq. (3) in polynomial time, and obtain the frac-
tional solution, denoted by . In the second step, the fractional
solution {z} will be rounded to O-1 solution {Z} for flow
statistics collection. The set of uncovered flows is denoted
by I'*, which is initialized as all flows in I'. We arbitrarily
choose an uncovered flow, denoted by ~, from set I'“. Then,
the algorithm chooses a flow set I‘g, whose %{ ‘ 1S maximum
among all these sets containing flow -, and set E{ = 1. That is,
the controller will send a Read-State command with wildcard
r; to switch v;. Moreover, we update I'* = I'* — I"/. The
algorithm will terminate until all flows are covered. The R-
FSC algorithm is described in Alg. 1.

2) Performance Analysis: We analyze the approximate per-
formance of the proposed algorithm. In the second step,
we arbitrarily choose an uncovered flow . Let I'? denote
all the sets that contain this flow. By the second feature of
wildcard rules, |T'7| < f, where f is the maximum number
of switches visited by each flow. Since each flow ~ will be

covered, Y, T > 1. Assume that a flow set I} is chosen
. j

in some iteration, for 7 is maximum among all these sets
containing flow . It follows zJ > % or f-7! > 1.

After solving the linear program in the first step of the
R-FSC algoritllm, we derive a fractional solution Z and an
optimal result A for the relaxed CO-FSC problem. According
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Algorithm 1 R-FSC: Rounding-Based FSC

1: Step 1: Solving the Relaxed CO-FSC Problem
: Construct the relaxed problem as Eq. (3)

: Obtain a fraction solution =

: Step 2: Rounding to 0-1 Solution

r=r

: while I'* # ® do

Arbitrarily choose an uncovered flow ~y
Choose a flow set I‘f , whose %{ is maximum among all
these sets conﬁaining flow +, and set /x\z =1

9. I'v=Tr“-T1Y

® N YA W

to the algorithm description, the final cost of switch v; is:
N — . J
c(vy) = ZTJER z; - o(I)
< (MY < FoX
< Znen f-@ e < f-A 4)

Thus, we conclude that

Theorem 3: The R-FSC algorithm can achieve
f-approximation for the CO-FSC problem.

3) A Lower-Complexity Algorithm Using Primal-Dual:
When a flow statistics collection event is triggered, we expect
that the controller can immediately determine the solution for
FSC. it is an important step to solve the linear program Eq. (3)
in the R-FSC algorithm. As the number of variables in Eq. (3)
mainly depends on the number of flows in an SDN, it may
contain a large number of variables for a large-scale network,
and it is rather costly in practice to solve such a linear program.
Thus, this section presents a lower-complexity algorithm using
primal-dual for CO-FSC. The primal-dual version of Eq. (3)
is given in Eq (5), in which two sets of variables x and p
denote the first and second sets of constraints in Eq. (3).

m
max E
be1 Xk

— - e(T < -
ZWEF‘Z Xk — i - ¢(T]) <0, Vi, j

ST ®
i=1
0<u; <1, W%

the

S.t.

We design the FSC-PD algorithm for the CO-FSC problem.
According to Eq. (5), we should increase the values of
variables y with constraints so as to maximize the objective
function. For each flow ~j, there is a corresponding vari-
able xj. At the beginning, the algorithm initializes a variable,
I'*, which denotes the uncovered flow set. For the ease of
algorithm design, we expect that the variable yj for each
uncovered flow will almost grow in line to a value, denoted
by d, which will be updated in algorithm execution. By the
first set of inequalities of Eq. (5), we have

ZWEF”’ X Z’"JER kael“{ Xk < ZrJeR i - e(T)

(6)

For simplicity, let tc(v;) be ETJeR ¢(T7). As we consider

“te(v;)

the critical case, it follows that § ~ £ , where n; is the

number of flows through switch v;. Combining with the second
inequality of Eq. (5), we set each variable y; as

n;
te(vg)

B ey oy
v; €V te(v;)

For ease description, if there is an uncovered flow in set F{ s
this set is accordingly uncovered. The algorithm mainly com-
prises a group of iterations. In each iteration, for each uncov-
ered flow set I‘f , the algorithm increases xx for each uncov-

J _
ered flow ~, to a value, denoted by 9], so that ka erd Xk =

@)

75 ~c(I‘g ). Under this situation, the variable x4 for the covered
flow ;s remains unchanged. We then choose a flow set I/
with the minimum value §; among all the uncovered flow sets.
According to the Primal-Dual’s property, the corresponding
variable =] in Eq. (1) is set to 1, which means that I} will
be chosen for flow statistics collection, or wildcard r; will
be applied on switch v;. We update the variable x; for each
uncovered flow v, € I — T as x; = 7. If all the flows are
covered, the algorithm terminates. Otherwise, we continue a
new iteration. The FSC-PD algorithm is described in Alg. 2.

Algorithm 2 FSC-PD: FSC Based on Primal-Dual

. Ir*=rr

2: for each switch v; € V' do

3:  Compute u; by Eq. (7)

: while [T%| > 0 do }

for each uncovered flow set I} do ‘
Increase xj, for each uncovered flow 7y to value &7,
so that 32 s Xk = i c(T)

7. Choose an uncovered flow set I‘g with the minimum value

6] among all the uncovered flow sets

8: for each uncovered flow 4, € T/ — ' do

9: Xk = 55 )

1. T*=Tr*-T!

AN AN

Theorem 4: The time complexity of FSC-PD is O(mnqf),
where m, n, ¢ and f are the number of flows, the number
of switches, the number of wildcard rules, and the maxi-
mum number of switches visited by each flow in a network,
respectively.

Proof: The FSC-PD algorithm first takes O(mf) to
initialize each variable p;, for all flows on each switch will
be processed. Since there are n switches and ¢ wildcard
rules, the algorithm consists of O(ng) iterations at most.
In each iteration, the algorithm computes the value &7 for
each uncovered flow set I"/, which takes a time complexity of
O(mf). Moreover, the algorithm will cost a time complexity
of O(m) to update variable I'“. Then, the total time complexity
of the FSC-PD algorithm is O(mngqf). O

B. Algorithm Design for CO-PFSC

This section studies a more general case, called partial
flow statistics collection. We design an approximation algo-
rithm using the rounding method for the CO-PFSC prob-
lem (Section III-B.I), and give approximation performance
analysis (Section I1I-B.2).
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1) An Approximation Algorithm for CO-PFSC((3): We
describe a rounding-based algorithm, called R-PFSC, for par-
tial flow statistics collection. Due to NP-Hardness, the algo-
rithm constructs a linear program as a relaxation of CO-
PFSC(3). We formulate the following linear program L Ps.

min A
J
2k < kaerg < Vv, €T
Z%ef Zk‘ - ﬁ M
S.t. ereR 2le(T]) <\, Vo, €V ®)
z] >0, Yo, €V, Vr; R
0<z, <1, Yy €T

By solving the linear program L P», we assume that the opti-
mal solution for L P, is denoted by Z, and the optimal result
is denoted by \. As LP; is a relaxation of the CO-PFSC(3)
problem, X is a lower-bound result for CO-PFSC(3).

In the second step, the controller will determine which
wildcard rules will be sent to each switch for partial flow
statistics collection. By solving L P, variable zj, denotes the
probability that the statistics information of flow 5 will
be collected. Then, we adapt the second step of R-FSC to
determine the flow statistics collection in our algorithm. The
set of covered flows is denoted by I'°, which is initialized
as ®. We choose an uncovered flow, denoted by i, with
maximum Zzj. If Z is less than 3, the algorithm terminates.
Otherwise, the algorithm chooses a flow set I'/, whose Z7 is
maximum among all these sets containing flow <y, and sets
z] = 1. This means that the controller will send the Read-
State command with wildcard r; to switch v;. The algorithm
will terminate until there have 3 - m covered flows in set I'“.
The R-PFSC algorithm is described in Alg. 3.

Algorithm 3 R-PFSC: Rounding-Based Partial FSC
1: Step 1: Solving the Relaxed PFSC Problem

2: Construct a linear program in Eq. (8)

3: Obtain the optimal solution Z and z

4: Step 2: Determining Flow Statistics Collection
5:1“=0;z2=1
6
7
8
9

: while [I'°| < #-m and z > (3 do
Choose an uncovered flow ~;, with maximum z
z = Ek
if z;, > (3 then
10: Choose a set I‘] whose z; is maximum among all
these sets containing the ﬂow Yk, and set 77 =1
1: Te=T¢4T1/

=~

2) Performance Analysis: We first give a famous lemma for
performance analysis.

Lemma 5 (Chernoff Bound): Given n independent vari-
ables: 1, T2, ..., Ty, where Va; € [0,1]. Let p = E[> 1| x;].

n ‘Z
Then, Pr | >z, < (1 —€)u| <e =z

=1
ily positivezvalue.

Number of Covered Flows Constraints: The R-PFSC algo-
rithm may not fully guarantee that the number of covered

where € is an arbitrar-
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flows exceeds [ - m. Under this case, one flow -, with
Zk > [3, should be covered. By the second constraint in Eq. (8),
Zwer Zr > (8- m, so we expect that more flows (e.g., 3 -m)
will be collected. We will further observe the ratio of covered
flows through extensive simulations in Section V-C. In the
following, we analyze the expected number of covered flows
for a special case, where z; is a random variable with uniform
distribution from O to 1. Let ¢ denote the event of solving
Eq. (8). Variable Z}, denotes whether flow -, is covered or not.
Each flow ~; will be covered with the probability of 0, =
Pr(z, > Ble). We compute E(z|¢) as follows:

E(zx|¢)
= E(zr > B) - Pr(zx > Ble) + E(zx < B) - Pr(zi < Blp)
:1;5 ek+é (1—0y) = 529’“ ©)

Combining the second inequality of Eq. (8), it fol-

lows > rE(zklp) = >, cr 5'59’“ > [ - m. Thus,

Zw er 0r > (- m. Then, the expected number of covered
flows is:

2 et Z et >
E[Z’YkEF Zk] Z’Yk el E[Zk] Z’Yk er P?“(Zk - ﬁ|90)
= > 3. 1
Doz Bom (10)
According to the Chernoff bound in Lemma 5, we have
—p28-m
P { Z.< (1— } < 1
> B S (=p)fm| <eT (an

where p is an arbitrarily constant with 0 < p < 1. We make
the following assumption:

~ —p?8:m 1
< — < <
Pr [ZWEF % < (1-p) ﬁm} <eTT < 12
As a result, we obtain
p > 2/logn/Bm (13)

We have the following lemma

Theorem 6: The R-PFSC algorithm will cover (1 — p)Sm
flows at least for statistics collection, with p > 21/logn/fm
under some special situations.

By our analysis, the number of covered flows will hardly
be violated by a factor of 1 — 24/logn/B#m. For example,
let n, m and ( be 103, 10° and 0.5, respectively. Obviously,
logn = 10, and we set p = 0.09. In other words, our R-PFSC
algorithm will collect statistics information of at least 0.91-5m
flows.

Bandwidth/Delay Cost Performance: After the first step of
the R-PFSC algorithm, we derive a fractional solution Z and an
optimal result A for the relaxed CO-PFSC(3) problem. In each
iteration of the second step, assume that the selected uncovered
flow is denoted by . It follows that zr > (. If one flow set
F] is chosen, we know that xj > 8 5 The cost of switch v; is:

cw) =Y @ elld)
- ZT’JER ﬂ
Thus, it follows

Theorem 7: The cost on each switch will not exceed L
times of the fractional solution by the R-PFSC algorithm.

orh <13

14
3 (14)
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C. Discussion

In this section, we give some discussions, including the
impact of switch CPU utilization on the collection cost,
the case study of the FSC, and the applicability of our
algorithms.

« The impact of switch CPU utilization. As specified in
the OpenFlow standard, each SDN switch has a software
implemented OpenFlow agent (OFA) that communicates
with the controller over a secure TCP connection. After
an FSC request is sent from the controller to the switch,
the OFA encapsulates the counter field combined with
other fields (e.g., match fields) of all matched flow entries
into a reply packet, and sends back the reply packet to the
controller. The OFA performance mainly depends on the
switch CPU capacity. Due to the limited CPU capacity
on the switch, the processing delay for flow statistics
collection will be increased with CPU utilization [13].
That is, the delay cost of FSC depends on the current
switch CPU state. To deal with this case, each switch v; is
assigned with a weight w;, which denotes the cost growth
coefficient with CPU utilization. Let p(v;) denote the
current CPU utilization. By applying the Little’s law [22]
the weight can be approximately set as w; = T()
Different from CO-FSC, the objective of the weighted
CO-FSC problem is to minimize the maximum weighted
cost of all switches, that is, min max{w; - c(v;),
Vv; € V}. Similar to Eq. (1), we can formalize this
problem as follows:

min A
J
Z%GF{ x; > 1, Vv, € T
S.t. N = 7y < )
e(v:) Z%R Jwi-e(T]) <A, Vo €V
$g€{0,1}, VT']‘GR

15)

From Eq. (15), this is the weighted version of the CO-
FSC problem. We can modify the R-FSC and FSC-PD
algorithms a little for the weighted version. It is similar
to consider the impact of the switch CPU utilization on
the switch cost for the CO-PFSC problem.

o The case study of the FSC. Many works [13], have
mentioned the fact that a small percentage of large (or
elephant) flows typically accounts for a large percentage
of total traffic, and plays an important role for route per-
formance. After collecting the flow statistics information
from switches, the controller determines a set of elephant
flows, denoted by I'®, and ranks all these elephant flows
in the decreasing order of traffic intensity. For each flow
v € TI', the controller finds the least congested path
between the flow’s endpoints as its new route. After
determining new routes for all the elephant flows in I'®,
we execute the route reconfiguration [20], [25], which can
reduce the route reconfiguration delay compared with that
for all flows in a network. Note that our proposed flow
statistics collection method can also be combined with
other routing methods in an SDN.

« The applicability of our algorithms. This paper assumes

that all the flows in the network are known. We note that
our proposed algorithms can also be applied in different
situations. 1) For the proactive manner, the controller
pre-installs rules for flows so as to improve the network
scalability. One may say that though the rules for some
flows are pre-installed, there may be no traffic for these
flows. That is, the controller may not exactly know all
the flows running through the network. To deal with this
case, we try to collect the statistics information of all
flows with installed rules for the following two reasons.
On one hand, when the controller installs a rule with
proactive manner, the controller can not judge whether
this flow is running or not. To guarantee the completeness
of FSC, we regard that all the flows may be running.
On the other hand, as described in B4 [26], the controller
will periodically update the flow tables according to the
traffic amount in the last period. Thus, it is reasonable to
regard that most flows with pre-installed rules are active
in this period. 2) In some environments, the wildcard
rules, which match IP prefixes or arbitrary header ranges,
may be installed in a flow table for high scalability. When
a wildcard rule is installed on a flow table, the statistics of
all flows matching this wildcard rule will be aggregated,
and we can not distinguish the statistics information of
each individual flow. In this situation, all flows matching
a wildcard rule can be regarded as a “flow”, also called
macroflow [27]. In fact, our flow statistics collection is
designed based on installed rules in the flow tables. That
is, we collect the values of the counter field in flow
entries. Thus, when the wildcard rules are applied, we can
not collect the statistics information of individual flows,
but the aggregated flows specified by the wildcard rules.
The applicability for multiple controllers. In a large-
scale SDN with more switches, it is an efficient way
to deploy multiple controllers for the single-controller
congestion avoidance. However, the distributed process-
ing on different controllers may lead to inconsistency
of the flow statistics information [28]. Though some
applications, such as traffic engineering, may not require
highly consistent statistics, but most of FCAPS manage-
ment applications [29] require consistency of managed
information. In the future, we will study the efficient
mechanism for consistency maintenance of flow statistics
information. For wildcard-based flow statistics collection,
when the controller sends a wildcard rule command,
the switch will compare with the flow entries with this
wildcard rule, encapsulate the statistics information of all
matched flow entries into a reply packet, and send back
to the controller. Compared with the per-flow and per-
switch FSC method, the wildcard-based method needs to
match all the entries in the whole flow table.

IV. LINK CoST-OPTIMIZED FSC

There are two kinds of connection schemes between the
controller and switches, out-band and in-band, respectively.
The above sections focus on the switch cost optimization for
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Fig. 2. Illustration of different switch-controller connection schemes. For
example, switch vy is directly connected with the controller. But, switch vg
is connected with the controller through a control path vo — v1 — controller.

flow statistics collection in an SDN, i.e., for the out-band
scheme. In this section, we consider the in-band connection
scheme, which has also been applied in many applications.
For example, to provide dynamic controller provisioning in
an SDN, many works [22] adopt the in-band controller
connection, in which the control messages are transferred
through a data plane path. Under this connection scheme, since
flow statistics information will be forwarded to the controller
through some links, this section will extend the CO-FSC
problem to achieve the (control) link cost optimization.

A. Link Cost-Optimized Flow Statistics
Collection (LCO-FSC) Problem

In this section, we define the link cost-optimized flow statis-
tics collection (LCO-FSC) problem, which is also the extended
version of the CO-FSC problem. In an SDN, we assume
that there is a cluster of controllers in the control plane.
To better control/manage all the switches, each switch will
connect/associate with a controller through TCP long-term
connection. Physically, there are two cases for the switch-
controller connection. One is that a switch is directly con-
nected with a controller. In this case, the LCO-FSC problem is
equivalent to the CO-FSC problem, which has been considered
in Section III-A. The other is that the physical control con-
nection may pass through one or several switches. As shown
in Fig. 2, switch v; is directly connected with the controller.
But, switch vy is connected with the controller through a
control path v9 —wv; —controller. For simplicity, we assume that
each switch v has built a path p(v) to the associated controller.

When an FSC event is triggered, the controller will send
Read-State commands, each of which contains a wildcard
rule, to different switches, so that all switches will report
the corresponding statistics information to the controller and
all the flows can be covered. As described in Section II-C,
the bandwidth cost on switch v; is denoted by c¢(v;). For
each control link e, its traffic load is the total amount of all
statistics information through this link, which is described as
l(e) = X uev, eep(v) €(vi)- In Fig. 2, both the data traffic
and control traffic will path through some links connecting
switches, e.g., v1ve and wvivg. Logically, we divide such a
link into two sub-links, data sub-link and control sub-link,
respectively. Without confusion, these sub-links are also called
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as links. To better guarantee the successful forwarding of FSC
and control commands, each control link will be allocated a
bandwidth (also called its capacity), denoted by c(e). In the
scenario of flow statistics collection, we expect that each con-
trol link should remain some bandwidth for control commands.
Otherwise, due to congestion on some control links, the control
commands can not be successfully sent to some switches.
Thus, our objective is to achieve the load balancing among
all the control links, that is, min max{ i((z)) ,e € E°}, where
E€ is a set of control links. Accordingly we formalize the
LCO-FSC problem as follows:

min 7
D e 2L,
yrET] *
) = Je(T? ,
oo | =%, e
= N<m. c
l(?) Zvev’ ccp(v) c(v;) <n-cle), Yee E
x36{051}7 VTjGR

Vv € T

(16)

where a:{ denotes whether the controller will send a Read-
State command with wildcard r; to switch v; or not. The
first set of inequalities denotes that each flow will be covered.
The second set of inequalities denotes the total bandwidth cost
on each switch. The third set of inequalities means that the
total traffic load on each control link, where 7 is the control
link load factor. The objective is to achieve the load balancing
among all the control links, that is, min 7.
Theorem 8: The LCO-FSC problem is NP-hard.

Proof: Consider a special case of the LCO-FSC problem,
in which each switch will directly connect with a controller.
This becomes the CO-FSC problem. Combining with Theo-
rem 1, it follows that the LCO-FSC problem is NP-hard. [

B. An Approximation Algorithm for LCO-FSC

In this section, we will modify the R-FSC algorithm a little
so as to solve the LCO-FSC problem. We call this algorithm
as MR-FSC. The proposed MR-FSC algorithm consists of two
main steps. In the first step, we relax the integer program
formulation in Eq. (16) to a linear program as Eq. (17).

min 7

J
nykerf 7 2 1, ' ' Vy €T
e(v;) = ZT cr zle(T?), Vo, €V
le) = ZUEV cen(o) c(v;) <n-cle), Vee E°
(Ei > Oa V?“j cR

S.t. A7)

We can solve Eq. (17) in polynomial time, and obtain the
fractional solution, denoted by 2. In the second step, the frac-
tional solution will be rounded to 0-1 solution for flow
statistics collection. The set of uncovered flows is denoted
by I'*, which is initialized as all flows in I'. We arbitrarily
choose an uncovered flow, denoted by ~, from set I'“. Then,
the algorithm chooses a flow set I', whose #; is maximum
among all these sets containing flow ~, and set 77 = 1.
That is, the controller will send a Read-State command with

wildcard 7; to switch v;. Moreover, we update I'* = T"* — I‘{ .



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: MINIMIZING FLOW STATISTICS COLLECTION COST USING WILDCARD-BASED REQUESTS IN SDNs 9

The algorithm will terminate until all flows are covered. The
MR-FSC algorithm is described in Alg. 4.

Algorithm 4 MR-FSC: Modified Rounding-Based FSC

1: Step 1: Solving the Relaxed LCO-FSC Problem
: Construct the relaxed formulation as Eq. (17)
: Obtain a fraction solution =
: Step 2: Rounding to 0-1 Solution
r=r
: while T'* #£ ® do
Arbitrarily choose an uncovered flow ~y

is maximum among all

Choose a flow set I‘f , whose %{
these sets containing flow +, and set 77 = 1
9. TI“=T"-TY

S I~ NV S N SO

C. Performance Analysis

We analyze the approximate performance of the proposed
algorithm. In the second step, we arbitrarily choose an uncov-
ered flow . Let I'” denote all the sets that contain this flow.
By the second feature of wildcard rules, [I"7| < f, where f is
the maximum number of switches visited by each flow. Since

each flow v will be covered, Zpgem Ef > 1. Assume that a

flow set T/ is chosen in some iteration. It follows 7 > 1.

After solving the linear program in the first step of the
MR-FSC algorithm, we derive a fractional solution z and an
optimal result 7) for the relaxed LCO-FSC problem. According
to the algorithm description, the final cost of each control link
e is:

7 _ ~J J
Z(e) - ZUGV eep(v) ZT‘J'GR .lﬁzC(Fz)

)

< (1
< ZUGV cen(v) ereRf z]c(I])

)

< fen-cle)

Thus, we can conclude that
Theorem 9: The MR-FSC algorithm can achieve the f-
approximation for the LCO-FSC problem.

(18)

D. A Greedy Algorithm for LCO-FSC

To determine the FSC solution immediately, this section
designs a greedy algorithm, called G-FSC, with lower time
complexity for LCO-FSC. In each iteration, we randomly
choose an uncovered flow, denoted by ~. Let I'” denote all
the sets that contain this flow. Then, we will choose a flow
set from I'7, so that the load factor of all control links is
minimized. Then, the algorithm will update the uncovered flow
set, and will be terminated until all flows are covered. The
greedy algorithm is described in Alg. 5.

Theorem 10: The time complexity of G-FSC is O(mfh),
where m, f and h are the number of flows, the maximum
number of switches visited by each flow, and the maximum
hop number of all control links in a network, respectively.

Proof: Since there are m flows in a network, the algorithm
consists of O(m) iterations at most. In each iteration, we will
randomly choose an uncovered flow. Then, we determine the

Algorithm 5 G-FSC: Greedy Method for FSC

T =T

2: while |T"| > 0 do

3:  Randomly choose an uncovered flow

4:  Determine the set I'”Y

5:  Choose a flow set from I'? so that the load factor of all
control links is minimized

6: Update the uncovered flow set I'*

switch and its wildcard with the less control traffic load factor,
which takes a time complexity of O(fh). Then, the total time
complexity of the G-FSC algorithm is O(mfh). O

We should note that our proposed G-FSC algorithm can be
modified to solve the partial flow statistics collection problem.
For PFSC, we just modify the iteration condition as I'* >
(1 — 8) - m in Line 2. After the algorithm terminates, there
are at least 8- m covered flows in a network.

V. PERFORMANCE EVALUATION

This section first introduces the metrics and benchmarks for
performance comparison (Section V-A). Then, we implement
our algorithms on the SDN platform, and give the testing
results (Section V-B). Finally, we evaluate our proposed algo-
rithms by comparing with the previous methods through simu-
lations (Section V-C). Our simulations are run on Mininet [30],
which is a widely-used simulator for SDN.

A. Performance Metrics and Benchmarks

This paper mainly cares for switch (bandwidth/delay) cost
and link cost of FSC for different problems, including
CO-FSC, CO-PFSC and LCO-FSC. When a switch is with a
heavy FSC load, it may heavily interfere with its basic func-
tions, such as data forwarding and updates. Thus, we expect
to minimize the maximum bandwidth cost on all switches.
Moreover, we expect to finish the flow statistics collection in
a fast manner. Thus, it is required to minimize the maximum
delay on all switches. When a control link is with a heavy
traffic control load, it may be congested, which may increase
the delay and loss ratio of control commands. Thus, we expect
to minimize the maximum bandwidth cost on all control links.
We use the following performance metrics in our numerical
evaluation.

1) The maximum bandwidth cost on any switch aduring a
run of testing/simulation. As described in Section II-C,
for a flow set I‘g, its bandwidth cost is defined
¢(TY) =96 - |T7| 4 188 with unit byte.

2) The maximum delay cost on any switch during a run of
simulation. For a flow set Fg, its delay cost is defined
¢(T) =0.19 - || + 1.21 with unit ms.

3) The total number of requests per FSC. We compare the
total number of requests necessary to collect statistics
information of all flows.

4) The algorithm running time. We mainly compare the
running time of R-FSC and FSC-PD, both designed for
the CO-FSC problem, by changing the number of flows.
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5) The ratio of covered flows. Given a flow recall ratio [,
the R-PFSC algorithm may not fully guarantee that the
number of covered flows exceeds (- m. The ratio of
covered flow is the number of covered flow by our
R-PFSC algorithm divided by the number of all flows
in a network.

6) The control link load factor. We measure the traffic
amount of flow statistics collection on each control link,
and compte the load factor of all control links in a
network.

7) The load balancing factor. As an application example,
we regard that the (partial) flow statistics knowledge will
benefit to the efficient routing. To measure the route
efficiency, the load factor of a data link is the traffic load
divided by the data link capacity. The load balancing
factor is the maximum load factor among all data links.

We compare the proposed FSC algorithms with the most-

related, state-of-the-art work of OpenTM [19] and Cemon [17]
by both testing and simulations. OpenTM and Cemon are
typical studies for per-flow and per-switch statistics collec-
tion mechanisms, respectively. OpenTM is a flow-based FSC
method, in which the controller will collect the statistics
information of each flow from a switch along the route path
randomly, so that the bandwidth/delay cost can be reduced.
The objective of Cemon is to reduce the total bandwidth cost
on the controller in an SDN. The algorithm chooses the most
cost-effective switches and removes the covered flows, until
all flows are covered.

B. Test-Bed Evaluation

1) Implementation on the Platform: There are two different
ways for building the SDN platform. One is based on the
physical switches, such as H3C S5120-28SC-HI switches.
The current version of this physical switch only supports
the per-flow and per-switch statistics collection, and we have
implemented two methods on the platform using the RESTful
APIs specified by the Opendaylight controller. For example,
to obtain the statistic of a flow, we should specify the values
of some parameters, such as switch-id, table-id and flow-id,
in the implementation. Moreover, we have tested the delay
for per-flow and per-switch statistics collection on the H3C
switch. Unfortunately, since our H3C SDN switches are devel-
oped based on the traditional switching framework, they do not
support the wildcard-based collection currently. In the future
version, provided that the hardware can support the wildcard-
based flow statistics collection, we can easily implement our
proposed algorithms using RESTful API interfaces by adapt-
ing our per-flow and per-switch implementations. The other is
based on the virtual switches. Since these virtual switches are
implemented by the software, they usually support all three
schemes of flow statistics collection.

We implement the per-flow, per-switch and wildcard-based
FSC algorithms on a real OVS-based test-bed. Our SDN
platform is mainly composed of three parts: a server installed
with the controller’s software, a set of virtual switches, and
some virtual machines (also called terminals). Specifically,
we choose Ryu [31], which is an open source project, as the
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Fig. 3. Topology of the SDN platform. Our platform is composed
of three parts: a controller, six OpenFlow enabled virtual switches
{v1,v2,v3,v4,v5,v6} and four virtual machines {w1,u2,us,us}. The
controller is directly connected with each switch. For simplicity, we omit
the controller in this figure.

controller’s software. The Ryu controller is running on a server
with a core 15-3470 processor and 4GB of RAM. The virtual
switch is implemented using the OVS 2.0.2 [21]. The topology
of our SDN platform is illustrated in Fig. 3. The forwarding
plane of an SDN comprises of 6 virtual switches, which
support the OpenFlow v1.3 standard. In the system testing,
each flow is identified by three elements, source IP, destination
IP and TCP port, so that each terminal is able to generate
different numbers of flows to other terminals.

To implement the wildcard-based flow statistics collection
on the virtual switch, the controller sends the request interface,
which is defined as the “OFPFlowStatsRequest” class, to the
target switch, and the match field in the “OFPFlowStat-
sRequest” class is described by the “OFPMatch” class. For
example, when we try to collect the statistics information
of flows whose destination is “192.168.3.5”, we create a
“OFPFlowStatsRequest” object, in which we set two para-
meters in the “OFPMatch” object as: eth_type=0x800, and
ipvd_dst = (‘192.168.3.5°,255.255.255.255), and send it to
the target switch.

2) Testing Results: We generate 600 and 1200 flows in the
network, respectively, and observe the maximum bandwidth
cost of all switches by different FSC algorithms. There are
four terminals and accordingly 12 terminal pairs in the system.
In the testing, each terminal pair will generate the same num-
ber of flows, and the controller will choose a path randomly
for each flow. Moreover, we allocate the size for each flow
according to the classical 2-8 rule [13]. The left plot of
Fig. 4 shows that our proposed R-FSC and FSC-PD algorithms
can perform better than OpenTM and Cemon, respectively.
More specifically, the maximum bandwidth cost of OpenTM
is about 0.342Mb and 0.689Mb for 600 flows and 1200 flows,
respectively. Given 1200 flows, the maximum bandwidth costs
of the Cemon, FSC-PD and R-FSC algorithms are 0.665Mb,
0.434Mb, and 0.274Mb, respectively. In other words, our
R-FSC and FSC-PD algorithms can reduce the maximum
bandwidth cost about 60.2% and 37.0%, respectively. The right
plot of Fig. 4 shows the maximum bandwidth cost by changing
the value of flow recall ratio 3. Our testing shows that, when
the flow recall ratio is smaller, the controller needs to collect
statistics information of a smaller number of flows, which
results in a smaller bandwidth cost. For the case of 1200 flows,
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the maximum bandwidth cost is 0.079Mb, 0.084Mb, 0.173Mb,
and 0.274Mb, respectively. That is, the partial flow statistics
collection mechanism (e.g., 8 = 0.4) can reduce the maxi-
mum bandwidth cost 69.2% compared with the flow statistics
collection mechanism (i.e., 3 = 1.0). These testing results
show higher efficiency of our proposed wildcard-based flow
statistics collection methods compared with per-flow and per-
switch FSC methods.

C. Simulation Evaluation

1) Simulation Setting: In the simulations, as running exam-
ples, we select two practical and typical topologies, one
for campus networks and the other for datacenter networks.
The first topology, denoted by (a), contains 100 switches,
200 servers and 397 links from [32]. The second one is
a fat-tree topology [33], which has been widely used in
many datacenter networks. The fat-tree topology has totally
80 switches (including 16 core switches, 32 aggregation
switches, and 32 edge switches) and 192 servers. Due to capac-
ity constraint of our simulation platform, the capacity of each
physical link is set as 100Mbps on both topologies. We execute
each simulation 100 times, and average the numerical results.
For the flow size, the authors of [13] have shown that less than
20% of the top-ranked flows may be responsible for more than
80% of the total traffic. Thus, we allocate the size for each
flow according to this rule.

2) Simulation Results: We run four groups of simulations
to check the effectiveness of our proposed FSC algorithms.
The first set of simulations observes how the number of flows
affects the switch cost performance, including maximum band-
width cost and maximum delay cost, of different algorithms
on two topologies. From Fig. 5, our proposed algorithms, both
R-FSC and FSC-PD, can significantly reduce the maximum
bandwidth cost compared with both two methods, especially
the per-switch method. That’s because, Cemon collects the
statistics information of all flows on some switches, which

11

% LUL OpenTM - ©- -
2 12 3 Cemon - —+ - Ic) 4
Q o FSC-PD - - -
I 09 S RFSC —H—] o 4
© [} . + 4
o A - .
g 06 ¥ E o7+ -
g T2 e 7
£ o3 n £ % -
© ©
: . = ‘
1 2 3 4 5 1 2 3 4 5
Number of Flows (x 10%) Number of Flows (x 10%)
Fig. 6. Maximum delay cost vs. number of flows for CO-FSC.

Left plot: Topology (a); right plot: Topology (b).

S}
g

o ----¢

-0o----

'
4
X

T
é 4 -0 ° %
$10°® OpenTM - © - [ ] OpenTM - © -
g FSC-PD - - - g FSC-PD - - -
x, 3 R-FSC —B— o R-FSC —&—
5107 Cemon - + - [] 5 Cemon - + -
2 8
€ £
5 E
z z

1 2 3 4 5
Number of Flows (x 104)

Number of Flows (x 104)

Fig. 7. Number of total requests vs. number of flows for CO-FSC.
Left plot: Topology (a); right plot: Topology (b).

leads to higher bandwidth cost on control links between
these switch and the controller. For example, when there are
1000 flows per server on average, our FSC-PD algorithm
can reduce the maximum bandwidth cost from 19Mb by
Cemon to only 6Mb. Fig. 5 shows that FSC-PD reduces the
maximum bandwidth cost by about 39% and 53% compared
with the OpenTM and Cemon methods, respectively. From
Fig. 6, our proposed algorithms can significantly reduce the
maximum delay cost compared with both per-switch and per-
flow collection methods. For the per-flow method, frequent
collection requests lead to serious collection delay. Fig. 6
shows that FSC-PD can reduce the delay cost of all switches
by about 52% and 45% compared with OpenTM and Cemon,
respectively. From Figs. 5 and 6, we find that our rounding-
based R-FSC algorithm performs better than the FSC-PD
algorithm based on primal-dual. Fig. 7 shows the total number
of requests for per FSC event. Obviously, since Cemon is a
per-switch FSC method, it needs the least number of requests
for FSC among four algorithms. Our proposed R-FSC and
FSC-PD algorithms require almost the similar number of
requests with varied number of flows, and only need 1/30-
1/50 FSC requests as OpenTM. Moreover, FSC-PD needs
almost the same number of requests as R-FSC in topology (b)
due to its structured topology. However, Fig. 8 shows that
FSC-PD can save much more running time compared with R-
FSC. More specifically, the running time of FSC-PD is only
about 1/4-1/10 as that of R-FSC, and the increasing ratio of
running time of FSC-PD is less than that of number of flows
in the network. Though both Cemon and OpenTM algorithms
need less running time than FSC-PD, running time of all three
algorithms is acceptable. These results show that our proposed
FSC-PD algorithm is much scalable and fit for the large-scale
networks.

The second set of six simulations observes the different
performance metrics of our R-PFSC algorithm by changing
the flow recall ratio 3 on two topologies. In these simulations,
there are 40K flows (i.e., about 200 flows per server) by default
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in the network. From Fig. 9, we find that, for a given parameter
0, the ratio of covered flows by our R-PFSC algorithm
mostly exceeds (3, while it is very close to [ in some cases,
e.g., 8 = 0.6. This figure shows that our R-PFSC algo-
rithm can satisfy the flow recall ratio in most situations.
From Figs. 10 and 11, the maximum bandwidth/delay cost
of FSC increases when the flow recall ratio § increases.
That’s because, with increase of flow recall ratio, statistics
of more flows will be collected, which results in a higher
cost, including bandwidth cost and delay cost. Both two
figures show that the R-PFSC algorithm with 8 = 0.8 can
decrease the maximum bandwidth/delay cost by about 52%
compared with that with § = 1.0.

The third set of simulations observes how the number of
flows affects the link cost performance, including control link
load factor and maximum bandwidth cost on links, of different
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algorithms. For both two topologies, we assume that a third
of all switches are directly connected with the controller.
Then, we will construct a width-first tree for other switches
so that each switch can build connection with the controller.
We set the capacity of each (logical) control link as 6Mbps
for topologies (a) and (b), respectively. Specifically, according
to the simulation setting, the capacity of each link connecting
two switches is 100Mbps. We divide this link into two logical
links. One is the data link with 94Mbps, and the other is
the control link with 6Mbps. From Fig. 12, our proposed
algorithms, both MR-FSC and G-FSC, can significantly reduce
the control link load factor compared with both per-switch and
per-flow collection methods, especially the per-switch method.
That’s because, Cemon collects the statistics information of all
flows just from some switches, which leads to higher cost on
some control links between these switch and the controller.
For example, when there are totally SOK flows in a network,
and the collection period is ls, our MR-FSC and G-FSC
algorithms reduce the control link load factor from 0.79 by
Cemon to only 0.22. Fig. 14 shows that G-FSC reduces the
control link load factor by about 52% and 65% compared
with the OpenTM and Cemon methods, respectively. From
Fig. 13, the control link load factor of FSC increases when
the flow recall ratio 3 increases, which is similar to Fig. 10.
Fig. 13 shows that the G-FSC algorithm with § = 0.4 can
decrease the maximum bandwidth/delay cost by about 48%
compared with that with § = 1.0. Figs. 14 and 15 plot the
maximum bandwidth cost of all control links for different
algorithms. There figures have the similar curves as those
in Figs. 5 and 10, respectively. We can obtain two conclusions
from these figures. 1) For FSC, both MR-FSC and G-FSC
algorithms significantly reduce the maximum bandwidth cost
compared with both Cemon and OpenTM, respectively. 2)
With increasing of the parameter 3, the maximum bandwidth
cost is increasing accordingly.

As an application example, after (partial) flow statistics
collection, we can re-route flows using the routing method,
as described in Section III-C, for better network performance,
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such as load balancing. In the simulation, there are 40K flows
in a network. The fourth group of simulations observe the route
performance by changing the parameter 3. Fig. 16 shows that
the load balancing factor will be reduced with a larger flow
recall ratio 8 (or with statistics knowledge of more flows).
For example, R-PFSC at § = 0.8 can reduce the cost 52%
compared with that at 3 = 1.0, with increased load-balancing
factor only about 5%.

VI. RELATED WORKS

Recently, SDN [2] has become an emerging technology for
future networks. Google designed and implemented B4, which
took a software defined networking architecture to connect
their data centers across the planet [26]. The authors of [3] pre-
sented SWAN, which boosted the utilization of inter-datacenter
networks by centrally controlling when and how much traffic
each service sent. Most previous works [3], assume that the
controller knows traffic intensity of each flow to provide
efficient route selection in a network. However, the flow traffic
intensity is often unknown in advance in many applications,
and dynamically changed during flow forwarding.

A related problem with our statistics collection is the flow
traffic measurement, and the comprehensive survey can be
found in [34]. The previous traffic measurement solutions are
mostly implemented through the sampling technique. Open-
Sample [10] leveraged sFlow packets [35] to provide near-

real-time measurements of both network load and individual
flows. Yu et al. [9] used a sketch-based measurement library
to automatically configure and manage resources for mea-
surement activities. The similar sketch-based traffic monitor-
ing method was also studied in [36]. The authors of [12]
allocated resources for sketch-based measurement tasks to
ensure a user-specified minimum accuracy. Some works stud-
ied the rule placement and traffic measurement for an SDN.
iSTAMP [37] used (de)aggregation measurement mechanism,
which dynamically partitioned the flow entries to allow fine-
grained or course measurement tasks of incoming flows.
The authors of [24] combined the direct measurement (e.g.,
flow statistics collection) and inference techniques based on
network tomography to derive a hybrid network monitoring
scheme, which could strike a balance between measurement
overhead and accuracy. All the above methods often estimate
the flow size with less overhead, which is different from
our statistics collection. Note that, our FSC solutions can
be combined with traffic measurement methods for different
applications.

In a general SDN, each switch counts the traffic of each
flow through the counter field in the flow entry. OpenFlow [8]
specified two different approaches, push-based and pull-based,
for flow statistics collection.

The first one is the push-based collection. FlowSense [38]
utilized the PacketIn and FlowRemoved messages, which were
sent by switches to the controller when a new flow come
in or upon the expiration of a flow entry. Devoflow [13]
extended OpenFlow with a new push-based statistics collection
mechanism for identifying the elephant flows and re-routing
them. However, the push-based mechanism required additional
hardware support on switches, or some modification on the
packet head (such as sFlow [35]). These requirements might
not be fully supported by most commodity switches, which
limited the application of the push-based mechanism.

The second one is the pull-based collection, which is
simple and has been widely used in many SDN applications.
OpenTM [19] was designed for traffic matrix estimation
using simple logic for querying flow table counters. The
logic was based on keeping statistics for each active flow
in the network. The information about active flows was
pulled from the switches periodically. OpenNetMon [16] pre-
sented an approach and open source software implementation
to monitor end-to-end QoS metrics of per-flow, especially
throughput, delay and packet loss, in OpenFlow networks.
The authors used an adaptive fetching mechanism to pull
data from switches where the rate of the queries increased
when flow rates differ between samples and decreased when
flows stabilized. PayLess [39] focused on the tradeoff between
accuracy and network overhead. It provided a flexible RESTful
API for flow statistics collection at different aggregation levels.
The most related works with ours were FlowCover [15] and
CeMon [17], which proposed a low-cost per-switch monitor-
ing scheme to support various network management tasks.
As a collection event was triggered, the controller collected
the statistics information of all the flows in a network.
Some applications, e.g., flow re-routing [13], require that the
pull-based statistics should be collected frequently enough,
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which may result in more serious per-switch cost, preventing
from packet forwarding on switches.

VII. CONCLUSION

In this paper, we have studied the efficient FSC mechanisms
to reduce the bandwidth cost and processing delay in an
SDN. We have proposed to use wildcard-based FSC to avoid
the disadvantages of both per-flow and per-switch FSC, and
presented several approximation algorithms for both FSC and
partial FSC problems. The testing and extensive simulation
results show high efficiency of our proposed algorithms. Since
the delay on the switch may depend on its traffic load, and not
be fully linear with the traffic amount of FSC, in the future,
we will study more practical delay model for flow statistics
collection.

APPENDIX
PROOF OF THEOREM 1

Proof: 'We prove the NP-hardness by showing that the
unrelated processor scheduling (UPS) problem [40] is a special
case of CO-FSC. Consider a special case, in which one wild-
card can only match one flow on each switch. We regard the
switches and flows in the CO-FSC problem as the processors
and tasks in the UPS problem. Assume that a flow ~ passes
through a set of switches, denoted by V7 = {v1,...,vs}.
It means that the statistics information of flow ~ will be
collected from one of switches in V7. It can be seen as that
a task v will only be scheduling on one of the processors
v1,...,Vs. Thus, the cost of task v on switch v is ¢; + co,
if v € V7; otherwise, its cost is co. As a result, the cost of each
switch becomes the cost of each processor. Then, CO-FSC is
equivalent to the following problem: how to schedule these
tasks, so that the makespan of all the processors is minimized.
Thus, this is a typical UPS problem, which is NP-Hard [40].
Since UPS is a special case of the CO-FSC problem, CO-FSC
is an NP-Hard problem too. (]
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