Training and Inference Methods over Translation Forests

Zhifei Li
Center for Language and Speech Processing
Computer Science Department
Johns Hopkins University

Joint work with Sanjeev Khudanpur, Jason Eisner, Chris Callison-Burch, and many other team members in the Joshua project
Statistical Machine Translation Pipeline

- **Bilingual Data**
- **Monolingual English**
- **Translation Model**
- **Language Model**
- **MT Decoder**
- **Training**
- **Optimal Weights**
- **Unseen Sentences**
- **Translation Outputs**
垫子上的猫
dianzi shang de mao
a cat on the mat

zhongguo de shoudu
capital of China

wo de mao
my cat

zhifei de mao
zhifei's cat

X→⟨X₀ de X₁, X₁ on X₀⟩
X→⟨X₀ de X₁, X₁ of X₀⟩
X→⟨X₀ de X₁, X₀ X₁⟩
X→⟨X₀ de X₁, X₀ 's X₁⟩
Joshua
(chart parser)

S → ⟨ X₀, X₀ ⟩

X → ⟨ X₀ de X₁, X₀ 's X₁ ⟩

X → ⟨ mao, a cat ⟩

X → ⟨ dianzi shang, the mat ⟩
$S \rightarrow \langle X_0, X_0 \rangle$

$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

$X \rightarrow \langle \text{dianzi shang, the mat} \rangle$

$X \rightarrow \langle \text{mao, a cat} \rangle$

dianzi$_0$ shang$_1$ de$_2$ mao$_3$

a cat on the mat

$S \rightarrow \langle X_0, X_0 \rangle$

$X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{ of } X_0 \rangle$

$X \rightarrow \langle \text{dianzi shang, the mat} \rangle$

$X \rightarrow \langle \text{mao, a cat} \rangle$

dianzi$_0$ shang$_1$ de$_2$ mao$_3$

a cat of the mat

$S \rightarrow \langle X_0, X_0 \rangle$

$X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{'s } X_1 \rangle$

$X \rightarrow \langle \text{dianzi shang, the mat} \rangle$

$X \rightarrow \langle \text{mao, a cat} \rangle$

dianzi$_0$ shang$_1$ de$_2$ mao$_3$

the mat 's a cat

Joshua

(chart parser)

dianzi shang de mao
hypergraph

Joshua (chart parser)

dianzi shang de mao
A hypergraph is a compact data structure to encode \textbf{exponentially many trees}.
A hypergraph is a compact data structure to encode **exponentially many trees**.
A hypergraph is a compact data structure to encode exponentially many trees.
A hypergraph is a compact data structure to encode exponentially many trees.
A hypergraph is a compact data structure to encode \textit{exponentially many trees}.
Why hypergraphs?

• Contains a much larger hypothesis space than an n-best list

• General compact data structure
 • special cases include lattice, finite state machine, and packed forest
 • can be used for speech, monolingual parsing, tree-based MT systems, and many more
Linear model:

$$p(d \mid x) = \theta \cdot \Phi(d, x)$$

- **weights**
- **features**

Weighted Hypergraph

- $S \rightarrow \langle X_0, X_0 \rangle$
- $X \rightarrow \langle X_0, X_0 \rangle$
- $X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{ on } X_0 \rangle$
- $X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{'s } X_1 \rangle$
- $X \rightarrow \langle \text{dianzi shang, the mat} \rangle$
- $X \rightarrow \langle \text{mao, a cat} \rangle$
- $p=1$
- $p=2$
- $p=3$

- **the mat 's a cat**
- **a cat of the mat**
- **a cat on the mat**
Log-linear model:

\[p(d \mid x) = \frac{e^{\theta \cdot \Phi(d, x)}}{Z(x)} \]

\[Z = 2 + 1 + 3 + 2 = 8 \]

\[p = \frac{2}{8} \]

\[p = \frac{3}{8} \]

\[p = \frac{1}{8} \]

\[p = \frac{2}{8} \]
The hypergraph defines a probability distribution over trees!

the distribution is parameterized by Θ

a cat on the mat

dianzi shang maoli de mao

dianzi shang de mao

S → ⟨X₀, X₀⟩

X → ⟨X₀ de X₁, X₀ of X₀⟩

X → ⟨dianzi shang, the mat⟩

X → ⟨mao, a cat⟩

p = 1/8

p = 2/8

p = 3/8

a cat of the mat

the mat's a cat

the mat a cat
The hypergraph defines a probability distribution over trees! the distribution is parameterized by Θ

What criterion do we use to set the parameters Θ?

Training

Given a fixed Θ and a hypergraph,
- how to compute the posterior of a hyperedge?

- how to choose a desired translation output?

Inference

Why are the problems difficult?

- brute-force will be too slow as there are exponentially many trees, so require sophisticated dynamic programs

- sometimes intractable, require approximations
Outline

• Hypergraph as hypothesis space

• **Training methods** (Li and Eisner, 2009)

• Exact and approximate inference

 ‣ exact inference

 ★ semiring framework (Li and Eisner, 2009)

 ‣ approximate inference

 ★ “principled” ones

 ✓ variational decoding (Li et. al, 2009)

 ✓ sampling and message passing methods

 ★ heuristic-based ones

 ✓ e.g., cube-pruning (Chiang, 2007)

• **Joshua project** (Li et. al, 2009)
Motivation for Training

• Towards a training method that can
 • dealing with millions of features
 • incorporate linguistics or semantic information
 • incorporate non-local dependency
 • perform reliable training
Training Setup

• Each **training example** consists of
 • a hypergraph representing hypothesized translations
 • a reference translation

\[\text{x: dianzi shang de mao} \]

\[\text{y*: a cat on the mat} \]

• Training
 • adjust the parameters \(\Theta \) so that the reference translation is preferred by the model
Training objectives

- Minimum error rate training (MERT)
- Minimum risk training
- **Minimum risk with deterministic annealing**
- Conditional random field (CRF)
- Perceptron
- MIRA
Minimum Error Rate Training

• Minimum Error Rate Training (MERT) (Och, 2003)

$$\theta^* = \arg \min_{\theta} \text{Loss}(\hat{y}, y^*)$$

$$- \text{BLEU}(y, y^*) \quad \hat{y} = \arg \max_y p_\theta(y | x)$$

(Papineni et al., 2001)

piecewise constant (not smoothed), not amenable to gradient descent, so cannot be scaled up to a large number of features

(Smith and Eisner, 2006)
Minimum Risk

- Minimum Error Rate Training (MERT) (Och, 2003)

$$\theta^* = \arg \min_{\theta} \text{Loss}(\hat{y}, y^*)$$

$$- \text{BLEU}(y, y^*)$$

$$\hat{y} = \arg \max_y p_{\theta}(y \mid x)$$

(Papineni et al., 2001)

- Minimum Risk Training

$$\theta^* = \arg \min_{\theta} \text{Risk}(\theta, y^*)$$

$$= \arg \min_{\theta} \sum_{y \in HG} p_{\theta}(y \mid x) \times \text{Loss}(y, y^*)$$

risk = expected loss = expected error rate
Minimum Risk with Deterministic Annealing

• Minimum risk objective

\[\theta^* = \arg \min_{\theta} \text{Risk}(\theta, y^*) \]

suffer from local-minimum problem

• Minimum risk with deterministic annealing

\[\theta^* = \arg \min_{\theta} \text{Risk}(\theta, y^*) - \text{Temperature} \times \text{Entropy}(p_\theta) \]

Smith and Eisner (2006) tried this on an n-best list
Conditional Random Field (CRF)

- Minimum risk objective
 \[\theta^* = \arg\min_\theta \sum_{y \in HG} p_\theta(y|x) \times \text{Loss}(y, y^*) \]

- Conditional Random Field (CRF)
 - or maximum conditional likelihood (MLE)
 \[\theta^* = \arg\max_\theta p_\theta(y^*|x) \]

CRF is minimum-risk training with a zero-one loss function!

\[\text{Loss}(y, y^*) = \begin{cases} 0 & \text{if } y = y^* \\ 1 & \text{otherwise.} \end{cases} \]

\[\text{Risk}(\theta, y^*) = \sum_{y \in HG \& y \neq y^*} p_\theta(y|x) = 1 - p_\theta(y^*|x) \]

no partial credit ☹
Perceptron

- Not explicitly optimize a certain objective function, rather it is a simple procedure

\[
\text{Perceptron}(x, \text{GEN}(x), y)
\]

1. \(\theta \leftarrow 0 \) \hspace{1cm} \triangleright \text{initialize as zero vector}
2. \text{for } t \leftarrow 1 \text{ to } T
3. \text{for } i \leftarrow 1 \text{ to } N
4. \quad \hat{y} \leftarrow \arg \max_{y \in \text{GEN}(x_i)} \Phi(x_i, y) \cdot \theta
5. \quad \text{if } (\hat{y} \neq y_i^*)
6. \quad \quad \theta \leftarrow \theta + \Phi(x_i, y_i^*) - \Phi(x_i, \hat{y})
7. \quad \text{return } \theta

See Li and Khudanpur (2009) for its application in MT
Why Minimum Risk Training?

<table>
<thead>
<tr>
<th></th>
<th>Min-Risk</th>
<th>MERT</th>
<th>CRF</th>
<th>Perceptron</th>
<th>MIRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>☺</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>BLEU</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Latent variable</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Oracle translation</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Model regularization</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
</tbody>
</table>

See Zens et al. (2007) for experimental comparisons.
Experimental Results

- Data set: IWSLT CN-EN 2005

<table>
<thead>
<tr>
<th>Training scheme</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERT (Nbest, small)</td>
<td>47.7</td>
</tr>
<tr>
<td>MR (Nbest, small)</td>
<td>47.7</td>
</tr>
<tr>
<td>MR (hypergraph, small)</td>
<td>48.4</td>
</tr>
<tr>
<td>MR (hypergraph, large)</td>
<td>48.7</td>
</tr>
</tbody>
</table>

Small: discriminatively tune 5 features

Large: also discriminatively tune the language model (21k additional features)

See Zens et al. (2007) for experimental comparisons on nbest for small number of features.
Outline

• Hypergraph as hypothesis space

• Training methods (Li and Eisner, 2009)

• Exact and approximate inference
 ‣ exact inference
 ★ semiring framework (Li and Eisner, 2009)
 ‣ approximate inference
 ★ “principled” ones
 ✓ variational decoding (Li et. al, 2009)
 ✓ sampling and message passing methods
 ★ heuristic-based ones
 ✓ cube-pruning (Chiang, 2007)

• Joshua project (Li et. al, 2009)
A semiring framework to compute all of these

- **First-order quantities:**
 - expectation
 - entropy
 - Bayes risk
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

- **Second-order quantities:**
 - Expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of entropy or Bayes risk

- **“decoding” quantities:**
 - Viterbi
 - K-best
 - Counting
 -
Compute Quantities on a Hypergraph: a Recipe

• Semiring-weighted inside algorithm
 • three steps:
 ▶ choose a semiring
 \[\langle K, \oplus, \otimes \rangle \]
 a set with plus and times operations
 e.g., integer numbers with regular + and ×
 ▶ specify a weight for each hyperedge
 each weight is a semiring member
 ▶ run the inside algorithm
 complexity is O(hypergraph size)
Semirings

- “Decoding” time semirings (Goodman, 1999)
 - counting, Viterbi, K-best, etc.
- “Training” time semirings
 - first-order expectation semirings (Eisner, 2002)
 - second-order expectation semirings (new)
- Applications of the Semirings (new)
 - entropy, risk, gradient of them, and many more
How many trees?

four 😊

compute it
use a semiring?
Compute the Number of Derivation Trees

Three steps:

- choose a semiring
 - counting semiring: ordinary integers with regular + and x

- specify a weight for each hyperedge

- run the inside algorithm
Bottom-up process in computing the number of trees

\[k(v_1) = k(e_1) \]
Bottom-up process in computing the number of trees
Compute $k(v_3)$: the weight at node v_3

Hyperedge e_3: $k(e_3) \otimes k(v_1) \otimes k(v_2) = 1 \otimes 1 \otimes 1 = 1$

Bottom-up process in computing the number of trees
Compute $k(v_3)$: the weight at node v_3

Hyperedge e_4: $k(e_4) \otimes k(v_1) \otimes k(v_2) = 1 \otimes 1 \otimes 1 = 1$

Bottom-up process in computing the number of trees
Compute $k(v_3)$: the weight at node v_3

Hyperedge e_3: $k(e_3) \otimes k(v_1) \otimes k(v_2) = 1$

Hyperedge e_4: $k(e_4) \otimes k(v_1) \otimes k(v_2) = 1$

Bottom-up process in computing the number of trees
Compute $k(v_3)$: the weight at node v_3

$$k(v_3) = k(e_3) \otimes k(v_1) \otimes k(v_2) \oplus k(e_4) \otimes k(v_1) \otimes k(v_2)$$

$$1 \oplus 1 = 2$$

Bottom-up process in computing the number of trees
Bottom-up process in computing the number of trees
Bottom-up process in computing the number of trees

\[
k(v_1) = k(e_1) \quad k(v_2) = k(e_2)
\]
\[
k(v_3) = k(e_3) \times k(v_1) \times k(v_2) \oplus k(e_4) \times k(v_1) \times k(v_2)
\]
\[
k(v_4) = k(e_5) \times k(v_1) \times k(v_2) \oplus k(e_6) \times k(v_1) \times k(v_2)
\]
\[
k(v_5) = k(e_7) \times k(v_3) \oplus k(e_8) \times k(v_4)
\]

\[
2 \oplus 2 = 4
\]

\[
k(v_5) = 4
\]

\[
k(v_4) = 2
\]

\[
k(v_3) = 2
\]

\[
k(v_1) = 1
\]

\[
k(v_2) = 1
\]

\[
dianzi_0 \quad shang_1 \quad de_2 \quad mao_3
\]
$k(v_1) = k(e_1)$

$k(v_2) = k(e_2)$

$k(v_3) = k(e_3) \times k(v_1) \times k(v_2) \oplus k(e_4) \times k(v_1) \times k(v_2)$

$k(v_4) = k(e_5) \times k(v_1) \times k(v_2) \oplus k(e_6) \times k(v_1) \times k(v_2)$

$k(v_5) = k(e_7) \times k(v_3) \oplus k(e_8) \times k(v_4)$

Summary:

- **input:** a weight at each edge
- **output:** a weight at each node
- \oplus is used at nodes
- \times is used at edges
\[
\begin{align*}
\text{expected translation length?} & \quad 2/8 \times 4 + 6/8 \times 5 = 4.75 \\
\text{variance?} & \quad 2/8 \times (4-4.75)^2 + 6/8 \times (5-4.75)^2 \approx 0.19
\end{align*}
\]
First- and Second-order Expectation Semirings

First-order:

- each member is a 2-tuple: \(\langle p, r \rangle \)

<table>
<thead>
<tr>
<th>(\langle p_1, r_1 \rangle \otimes \langle p_2, r_2 \rangle)</th>
<th>(\langle p_1 p_2, p_1 r_2 + p_2 r_1 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle p_1, r_1 \rangle \oplus \langle p_2, r_2 \rangle)</td>
<td>(\langle p_1 + p_2, r_1 + r_2 \rangle)</td>
</tr>
</tbody>
</table>

Second-order:

- each member is a 4-tuple: \(\langle p, r, s, t \rangle \)

<table>
<thead>
<tr>
<th>(\langle p_1, r_1, s_1, t_1 \rangle \otimes \langle p_2, r_2, s_2, t_2 \rangle)</th>
<th>(\langle p_1 p_2, p_1 r_2 + p_2 r_1, p_1 s_2 + p_2 s_1, p_1 t_2 + p_2 t_1 + r_1 s_2 + r_2 s_1 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle p_1, r_1, s_1, t_1 \rangle \oplus \langle p_2, r_2, s_2, t_2 \rangle)</td>
<td>(\langle p_1 + p_2, r_1 + r_2, s_1 + s_2, t_1 + t_2 \rangle)</td>
</tr>
</tbody>
</table>
Compute Expected Translation Length

- choose a semiring
 - first-order expectation semiring
- specify a weight for each hyperedge

\[k_e \overset{\text{def}}{=} \langle p_e, p_e r_e \rangle \]

- \(p_e \): transition probability or log-linear score at edge \(e \)
- \(r_e \): number of English words generated at edge \(e \)

- run the inside algorithm
Compute Variance in Translation Length

- choose a semiring
 second-order expectation semiring
- specify a weight for each edge
 \[k_e \overset{\text{def}}{=} \langle p_e, p_e r_e, p_e s_e, p_e r_e s_e \rangle \]
 - \(p_e \): transition probability or log-linear score at edge \(e \)
 - \(r_e = s_e \): number of English words generated at edge \(e \)
- run the inside algorithm
First-order:
each semiring member is a 2-tuple
Second-order: each semiring member is a 4-tuple
Expectations on Hypergraphs

• Expectation over a hypergraph

\[\bar{r} \overset{\text{def}}{=} \mathbb{E}_p[r] = \sum_{d \in \text{HG}} p(d)r(d) \]

• \(r(d) \) is a function over a derivation \(d \)
e.g., the length of the translation yielded by \(d \)

• \(r(d) \) is additively decomposed
\[r(d) \overset{\text{def}}{=} \sum_{e \in d} r_e \]
e.g., translation length is additively decomposed!
Second-order Expectations on Hypergraphs

- **Expectation of products** over a hypergraph
 \[
 \bar{t} \overset{\text{def}}{=} \mathbb{E}_p[r \cdot s] = \sum_{d \in \text{HG}} p(d) r(d) s(d)
 \]

- \(r\) and \(s\) are additively decomposed
 \[
 r(d) \overset{\text{def}}{=} \sum_{e \in d} r_e
 \]
 \[
 s(d) \overset{\text{def}}{=} \sum_{e \in d} s_e
 \]

\(r\) and \(s\) can be identical or different functions.
Compute expectation using expectation semiring:

\[k_e \overset{\text{def}}{=} \langle p_e, p_e r_e \rangle \]

\(p_e \): transition probability or log-linear score at edge \(e \).

\(r_e \)?

Entropy:

\[r_e \overset{\text{def}}{=} \log p_e \]

Why?

Entropy is an **expectation**

\[H(p) = \mathbb{E}_p[-\log p] = - \sum_{d \in \mathbb{H}_G} p(d) \log p(d) \]

\(\log p(d) \) is additively decomposed!
Compute expectation using expectation semiring:

\[
\begin{align*}
ke & \overset{\text{def}}{=} \langle pe, pe re \rangle \\
pe & \text{: transition probability or log-linear score at edge } e \\
re & \text{?}
\end{align*}
\]

Entropy:

\[
\begin{align*}
re & \overset{\text{def}}{=} \log pe \\

\end{align*}
\]

Cross-entropy:

\[
\begin{align*}
re & \overset{\text{def}}{=} \log qe \\

\end{align*}
\]

Why?

cross-entropy is an **expectation**

\[
H(p, q) = \mathbb{E}_p (− \log q) = − \sum_{d \in HG} p(d) \log q(d)
\]

log q(d) is additively decomposed!
Compute expectation using expectation semiring:

\[k_e \overset{\text{def}}{=} \langle p_e, p_e r_e \rangle \]

\(p_e \): transition probability or log-linear score at edge \(e \)

\(r_e \)?

Entropy:

\[r_e \overset{\text{def}}{=} \log p_e \]

Cross-entropy:

\[r_e \overset{\text{def}}{=} \log q_e \]

Bayes risk:

\[r_e \overset{\text{def}}{=} \text{loss at edge } e \]

Why?

Bayes risk is an **expectation**

\[\text{Risk} = \mathbb{E}_p(L) = - \sum_{d \in HG} p(d) \cdot L(Y(d)) \]

\(L(Y(d)) \) is additively decomposed! (Tromble et al. 2008)
Applications of expectation semirings: a summary

First-order:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Weight for edge e</th>
<th>Value at root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation</td>
<td>$\langle p_e, pe r_e \rangle$</td>
<td>$\langle Z, \bar{r} \rangle$</td>
</tr>
<tr>
<td>First-order gradient</td>
<td>$\langle p_e, \nabla p_e \rangle$</td>
<td>$\langle Z, \nabla Z \rangle$</td>
</tr>
</tbody>
</table>

Second-order:

Covariance matrix	$\langle p_e, pe r_e, pe s_e, pe r_e s_e \rangle$	$\langle Z, \bar{r}, \bar{s}, \bar{t} \rangle$
Hessian matrix	$\langle p_e, \nabla p_e, \nabla p_e, \nabla^2 p_e \rangle$	$\langle Z, \nabla Z, \nabla Z, \nabla^2 Z \rangle$
Gradient of expectation	$\langle p_e, pe r_e, \nabla p_e, (\nabla p_e) r_e + p_e (\nabla r_e) \rangle$	$\langle Z, \bar{r}, \nabla Z, \nabla \bar{r} \rangle$

\[p_e = \exp(\Phi_e \cdot \theta) \quad \nabla p_e = p_e \Phi_e \]

- choose a semiring
- define a weight for each edge
- run inside algorithm
Applications of expectation semirings: a summary

First-order:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Weight for edge e</th>
<th>Value at root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation</td>
<td>$\langle p_e, p_e r_e \rangle$</td>
<td>$\langle Z, r \rangle$</td>
</tr>
<tr>
<td>First-order gradient</td>
<td>$\langle p_e, \nabla p_e \rangle$</td>
<td>$\langle Z, \nabla Z \rangle$</td>
</tr>
</tbody>
</table>

Second-order:

<table>
<thead>
<tr>
<th></th>
<th>$\langle p_e, p_e r_e, p_e s_e, p_e r_e s_e \rangle$</th>
<th>$\langle Z, \bar{r}, \bar{s}, \bar{t} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hessian matrix</td>
<td>$\langle p_e, \nabla p_e, \nabla p_e, \nabla^2 p_e \rangle$</td>
<td>$\langle Z, \nabla Z, \nabla Z, \nabla^2 Z \rangle$</td>
</tr>
<tr>
<td>Gradient of expectation</td>
<td>$\langle p_e, p_e r_e, \nabla p_e, (\nabla p_e) r_e + p_e(\nabla r_e) \rangle$</td>
<td>$\langle Z, \bar{r}, \nabla Z, \nabla \bar{r} \rangle$</td>
</tr>
</tbody>
</table>

Entropy and Bayes risk are expectations.

- choose a semiring
- define a weight for each edge
- run inside algorithm
A semiring framework to compute all of these

- “decoding” quantities:
 - Viterbi
 - K-best
 - Counting
 -

• First-order quantities:
 - expectation
 - entropy
 - Bayes risk
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

• Second-order quantities:
 - Expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of entropy or Bayes risk
This work provides a unified, elegant, and efficient framework to compute all of these!

• **First-order quantities:**
 - expectation
 - entropy
 - Bayes risk
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

• **Second-order quantities:**
 - Expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of entropy or Bayes risk

Improved BLEU score!
Future: machine learning for MT

- feature interaction
- second-order gradient descent
- minimum risk
- deterministic annealing
- active learning
- semi-supervised learning

semirings for parameter estimation
Outline

• Hypergraph as hypothesis space

• Training methods
 (Li and Eisner, 2009)

• Exact and approximate inference

 ▸ exact inference
 ★ semiring framework
 (Li and Eisner, 2009)

 ▸ approximate inference
 ★ “principled” ones
 ✓ variational decoding
 (Li et. al, 2009)
 ✓ sampling and message passing methods
 ★ heuristic-based ones
 ✓ cube-pruning
 (Chiang, 2007)

• Joshua project
 (Li et. al, 2009)
Decoding over a hypergraph

Given a hypergraph of possible translations
(generated for a given foreign sentence by already-trained model)

Pick a single translation to output
(why not just pick the tree with the highest weight?)
Spurious Ambiguity

- Statistical models in MT exhibit **spurious ambiguity**

 - Many **different derivations** (e.g., trees or segmentations) generate the **same translation string**

- Tree-based MT systems

 - **derivation tree ambiguity**

- Regular phrase-based MT systems

 - **phrase segmentation ambiguity**
Spurious Ambiguity in Derivation Trees

Same output: “machine translation software”

Three different derivation trees

Another translation: machine transfer software
Maximum A Posterior (MAP) Decoding

<table>
<thead>
<tr>
<th>Translation String</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td></td>
</tr>
<tr>
<td>blue translation</td>
<td></td>
</tr>
<tr>
<td>green translation</td>
<td></td>
</tr>
</tbody>
</table>

- **Exact MAP decoding**

\[
y^* = \arg\max_{y \in \text{Trans}(x)} p(y|x)
\]

\[
= \arg\max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y)} p(y, d|x)
\]

- **x**: Foreign sentence
- **y**: English sentence
- **d**: derivation
Maximum A Posterior (MAP) Decoding

- **Exact MAP decoding**

\[y^* = \arg \max_{y \in \text{Trans}(x)} p(y|x) \]
\[= \arg \max_{y \in \text{Trans}(x)} \sum_{d \in \mathcal{D}(x,y)} p(y,d|x) \]

Translation String	**MAP**	**Derivation**	**Probability**
red translation | 0.28 | | 0.16
blue translation | | | 0.14
green translation | | | 0.14

- **x**: Foreign sentence
- **y**: English sentence
- **d**: derivation
Maximum A Posterior (MAP) Decoding

- **translation string**
 - red translation: 0.28
 - blue translation: 0.28
 - green translation

- **Exact MAP decoding**
 \[
 y^* = \arg \max_{y \in \text{Trans}(x)} p(y|x) = \arg \max_{y \in \text{Trans}(x)} \sum_{d \in \text{D}(x,y)} p(y, d|x)
 \]

- **derivation and probability**
 - red translation: derivation, probability = 0.16
 - blue translation: derivation, probability = 0.14
 - green translation: derivation, probability = 0.13

- **Notes**
 - **x**: Foreign sentence
 - **y**: English sentence
 - **d**: derivation
Maximum A Posterior (MAP) Decoding

<table>
<thead>
<tr>
<th>Translation String</th>
<th>MAP</th>
<th>Derivation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td>0.28</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>blue translation</td>
<td>0.28</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>green translation</td>
<td>0.44</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

- **Exact MAP decoding**

\[
y^* = \arg \max_{y \in \text{Trans}(x)} p(y|x)
\]

\[
= \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y)} p(y, d|x)
\]

- **x**: Foreign sentence
- **y**: English sentence
- **d**: derivation
Maximum A Posterior (MAP) Decoding

<table>
<thead>
<tr>
<th>translation string</th>
<th>MAP</th>
<th>derivation</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td>0.28</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>blue translation</td>
<td>0.28</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>green translation</td>
<td>0.44</td>
<td></td>
<td>0.14</td>
</tr>
</tbody>
</table>

• Exact MAP decoding

\[
y^* = \arg \max_{y \in \text{Trans}(x)} p(y|x)
\]

\[
= \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y)} p(y, d|x)
\]

exponential size NP-hard (Sima’an 1996)

• x: Foreign sentence
• y: English sentence
• d: derivation
Viterbi Approximation

<table>
<thead>
<tr>
<th>translation string</th>
<th>MAP</th>
<th>Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>blue translation</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>green translation</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>

- **Viterbi approximation**

\[y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in \mathcal{D}(x, y)} p(y, d | x) \]

\[= \ Y(\arg \max_{d \in \mathcal{D}(x)} p(y, d | x)) \]
Viterbi Approximation

<table>
<thead>
<tr>
<th>Translation String</th>
<th>MAP</th>
<th>Viterbi</th>
<th>Derivation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red translation</td>
<td>0.28</td>
<td>0.16</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Blue translation</td>
<td>0.28</td>
<td>0.14</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Green translation</td>
<td>0.44</td>
<td>0.13</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

- **Viterbi approximation**

\[
y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y, d|x)
\]

\[
y^* = Y(\arg \max_{d \in D(x)} p(y, d|x))
\]
\begin{itemize}
\item N-best approximation (\textit{crunching}) (May and Knight, 2006)
\end{itemize}

\[
y^* = \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x, y) \cap \text{ND}(x)} p(y, d | x)
\]
N-best Approximation

<table>
<thead>
<tr>
<th>Translation String</th>
<th>MAP</th>
<th>Viterbi</th>
<th>4-best crunching</th>
<th>Derivation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td>0.28</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>blue translation</td>
<td>0.28</td>
<td>0.14</td>
<td>0.28</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>green translation</td>
<td>0.44</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

- **N-best approximation (crunching)** ([May and Knight, 2006](#))

\[
y^* = \arg \max_{y \in \text{Trans}(x)} \sum_{d \in \text{D}(x,y) \cap \text{ND}(x)} p(y, d | x)
\]
MAP vs. Approximations

<table>
<thead>
<tr>
<th>Translation String</th>
<th>MAP</th>
<th>Viterbi</th>
<th>4-Best Crunching</th>
<th>Derivation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>red translation</td>
<td>0.28</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>blue translation</td>
<td>0.28</td>
<td>0.14</td>
<td>0.28</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>green translation</td>
<td>0.44</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

- Exact MAP decoding under spurious ambiguity is **intractable** on HG
- Viterbi and crunching are efficient, but ignore most derivations
- **Our goal:** develop an **approximation** that considers all the derivations but still allows **tractable** decoding
Variational Decoding

Decoding using Variational approximation

Decoding using a sentence-specific approximate distribution
Sentence-specific decoding

Three steps:

1. Generate a hypergraph for the foreign sentence

Variational Decoding for MT: an Overview

MAP decoding under P is intractable
Generate a hypergraph

Estimate a model from the hypergraph

\[q^*(y \mid x) \approx \sum_{d \in D(x,y)} p(y,d \mid x) \]

Decode using \(q^* \) on the hypergraph
Variational Inference

- We want to do inference under p, but it is intractable

$$y^* = \arg \max_y p(y | x)$$

- Instead, we derive a simpler distribution q^*

$$q^* = \arg \min_{q \in Q} \text{KL}(p || q)$$

- Then, we will use q^* as a surrogate for p in inference

$$y^* = \arg \max_y q^*(y | x)$$
Variational Approximation

• \(q^* \): an approximation having minimum distance to \(p \)

\[
q^* = \arg \min_{q \in Q} KL(p \| q) = \arg \min_{q \in Q} \sum_{y \in \text{Trans}(x)} p \log \frac{p}{q} = \arg \min_{q \in Q} \sum_{y \in \text{Trans}(x)} (p \log p - p \log q) = \arg \max_{q \in Q} \sum_{y \in \text{Trans}(x)} p \log q
\]

• Three questions
 • how to parameterize \(q \)?
 • how to estimate \(q^* \)?
 • how to use \(q^* \) for decoding?

A family of distributions

A constant
Parameterization of $q \in Q$

- Naturally, we parameterize q as an n-gram model.
- The probability of a string is a product of the probabilities of those n-grams appearing in that string.

3-gram model

$y: a \ b \ c \ d \ e \ f$

$$q(y) = q(a) \cdot q(b|a) \cdot q(c|ab) \cdot q(d|bc) \cdot q(e|cd) \cdot q(f|de)$$

Other ways of parameterizations are possible!
Parameterization of $q \in \mathcal{Q}$

- Naturally, we parameterize q as an n-gram model.
- The probability of a string is a product of the probabilities of those n-grams appearing in that string.

3-gram model

$y: a \ b \ c \ d \ e \ f$

$$q(y) = q(a) \cdot q(b|a) \cdot q(c|ab) \cdot q(d|bc) \cdot q(e|cd) \cdot q(f|de)$$

how to estimate these n-gram probabilities?
Estimation of $q^* \in Q$

- Variational approximation
 \[
 q^* = \arg\max_{q \in Q} \sum_{y \in \text{Trans}(x)} p \log q
 \]

- q^* is a maximum likelihood estimate (MLE) where p is the empirical distribution

But in our case, p is defined **not** by a corpus, but by a **hypergraph** for a given test sentence!

estimate

- bi-gram model
 - brute force
 - dynamic programming
Estimating q^* from a hypergraph: brute force

Bi-gram estimation:

- unpack the hypergraph
Estimating \(q^* \) from a hypergraph: brute force

Bi-gram estimation:

- unpack the hypergraph

\[
\begin{align*}
S &\rightarrow \langle X_0, X_0 \rangle \\
X &\rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle \\
X &\rightarrow \langle X_0 \text{ de } X_1, X_0 \text{'s } X_1 \rangle \\
S &\rightarrow \langle X_0, X_0 \rangle
\end{align*}
\]
Estimating q^* from a hypergraph: brute force

- **Unpack the hypergraph**
- **Accumulate the soft-count of each bigram**
- **Normalize the counts**

Bi-gram estimation:

- $p = 1/8$ for "cat on the mat"
- $p = 3/8$ for "the mat's a cat"
- $p = 2/8$ for both "the mat a cat" and "a cat of the mat"

Example calculations:

- $q*(on | cat) = 1/8$
- $q*(</s> | cat) = 5/8$
- $q*(of | cat) = 2/8$
Estimating q^* from a hypergraph: dynamic programming

Bi-gram estimation:

- run inside-outside on the hypergraph expectation semirings!
- accumulate the **soft-count** of each bigram at each hyperedge
- normalize the counts
Decoding using $q^* \in Q$

- Rescore the hypergraph $HG(x)$

\[y^* = \arg \max_{y \in HG(x)} q^*(y|x) \]

q^* is an n-gram model.

- have efficient dynamic programming algorithms
- score the hypergraph using an n-gram model
KL divergences under different variational models

\[q^* = \arg \min_{q \in Q} \text{KL}(p || q) = H(p, q) - H(p) \]

Measure	\(\overline{H}(p) \)	\(\overline{\text{KL}}(p		\cdot) \)	
bits/word		\(q_1^* \)	\(q_2^* \)	\(q_3^* \)	\(q_4^* \)
MT’04	1.36	0.97	0.32	0.21	0.17
MT’05	1.37	0.94	0.32	0.21	0.17

- Larger \(n \) ==> better approximation \(q_n \) ==> smaller KL divergence from \(p \)
- The reduction of KL divergence happens mostly when switching from unigram to bigram
KL divergences under different variational models

\[q^* = \arg \min_{q \in Q} \text{KL}(p \| q) = H(p, q) - H(p) \]

<table>
<thead>
<tr>
<th>Measure</th>
<th>(\bar{H}(p))</th>
<th>(q_1^*)</th>
<th>(q_2^*)</th>
<th>(q_3^*)</th>
<th>(q_4^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits/word</td>
<td>1.36</td>
<td>0.97</td>
<td>0.32</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>MT’04</td>
<td>1.37</td>
<td>0.94</td>
<td>0.32</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>MT’05</td>
<td>1.37</td>
<td>0.94</td>
<td>0.32</td>
<td>0.21</td>
<td>0.17</td>
</tr>
</tbody>
</table>

How to compute KL on a hypergraph?

use expectation semiring, again ☺
BLEU scores when using a single variational n-gram model

<table>
<thead>
<tr>
<th>Decoding scheme</th>
<th>MT’04</th>
<th>MT’05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi</td>
<td>35.4</td>
<td>32.6</td>
</tr>
<tr>
<td>1gram</td>
<td>25.9</td>
<td>24.5</td>
</tr>
<tr>
<td>2gram</td>
<td>36.1</td>
<td>33.4</td>
</tr>
<tr>
<td>3gram</td>
<td>36.0</td>
<td>33.1</td>
</tr>
<tr>
<td>4gram</td>
<td>35.8</td>
<td>32.9</td>
</tr>
</tbody>
</table>

- unigram performs very badly
- bigram achieves best BLEU scores

modeling error in \(p \)
BLEU cares about both low- and high-order \(n \)-gram matches

- Interpolate variational \(n \)-gram approximations for different \(n \)

\[
y^* = \arg \max_{y \in \text{HG}(x)} \sum_n \theta_n \cdot \log q^*_n(y \mid x)
\]

- Viterbi is yet another approximation of \(p \), so throw it in too

\[
y^* = \arg \max_{y \in \text{HG}(x)} \left(\sum_n \theta_n \cdot \log q^*_n(y \mid x) + \theta_v \cdot \log p_{\text{Viterbi}}(y \mid x) \right)
\]
Minimum Bayes Risk (MBR) decoding?

(Kumar and Byrne, 2004)
(Tromble et al. 2008)
(Denero et al. 2009)
(Li et al. 2009)
Minimum Risk Decoding

• Maximum A Posterior (MAP) decoding
 • find the most probable translation string
 \[y^* = \arg \max_{y \in HG(x)} p(y|x) \]

• Minimum risk decoding
 • find the consensus translation string
 \[y^* = \arg \min_{y \in HG(x)} \text{Risk}(y) \]

risk = expected loss = expected error rate
Variational Decoding (VD) vs. MBR (Tromble et al. 2008)

Both BLEU metric and our variational distributions happen to use n-gram dependencies.
• Variational decoding with interpolation

\[y^* = \arg \max_{y \in \text{HG}(x)} \sum_n \theta_n \cdot \log q_n^*(y \mid x) \]

\[q_n(y \mid x) = \prod_{w \in W_n} q(r(w) \mid h(w), x)c_w(y) \]

\[q(r(w) \mid h(w), x) = \frac{\sum_{y'} c_w(y')p(y' \mid x)}{\sum_{y'} c_h(w)(y')p(y' \mid x)} \]

• Minimum risk decoding (Tromble et al. 2008)

\[y^* = \arg \max_{y \in \text{HG}(x)} \sum_n \theta_n \cdot g_n(y \mid x) \]

\[g_n(y \mid x) = \sum_{w \in W_n} g(w \mid x)c_w(y) \]

\[g(w \mid x) = \sum_{y'} \delta_w(y')p(y' \mid x) \]
• Variational decoding with interpolation

\[y^* = \arg \max_{y \in \mathbb{HG}(x)} \sum_n \theta_n \cdot \log q_n^*(y \mid x) \]

\[q_n(y \mid x) = \prod_{w \in W_n} q(r(w) \mid h(w), x)^{c_w}(y) \]

\[q(r(w) \mid h(w), x) = \frac{\sum_{y'} c_w(y') p(y' \mid x)}{\sum_{y'} c_h(w)(y') p(y' \mid x)} \]

• Minimum risk decoding (Tromble et al. 2008)

\[y^* = \arg \max_{y \in \mathbb{HG}(x)} \sum_n \theta_n \cdot g_n(y \mid x) \]

\[g_n(y \mid x) = \sum_{w \in W_n} g(w \mid x)^{c_w}(y) \]

\[g(w \mid x) = \sum_{y'} \delta_w(y') p(y' \mid x) \]

non-probabilistic

very expensive to compute
BLEU Results on Chinese-English NIST MT 2004 Tasks

<table>
<thead>
<tr>
<th>Decoding scheme</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi</td>
<td>35.4</td>
</tr>
<tr>
<td>MBR ((K=1000))</td>
<td>35.8</td>
</tr>
<tr>
<td>Crunching ((N=10000))</td>
<td>35.7</td>
</tr>
<tr>
<td>Crunching+MBR ((N=10000))</td>
<td>35.8</td>
</tr>
<tr>
<td>Variational ((1to4gram+wp+vt))</td>
<td>36.6</td>
</tr>
</tbody>
</table>

- variational decoding improves over Viterbi, MBR, and crunching

(Kumar and Byrne, 2004)

(May and Knight, 2006)
Variational Inference

- We want to do inference under p, but it is intractable

\[y^* = \arg \max_y p(y|x) \]

- Instead, we derive a simpler distribution q^*

\[q^* = \arg \min_{q \in Q} \text{KL}(p||q) \]

- Then, we will use q^* as a surrogate for p in inference

\[y^* = \arg \max_y q^*(y | x) \]
Summary of Variational Decoding

• Exact MAP decoding with spurious ambiguity is intractable

• Viterbi or N-best approximations are efficient, but ignore most derivations

• We developed a variational approximation, which considers all derivations but still allows tractable decoding

• Our variational decoding improves a state of the art baseline
Future directions

• Decoding with spurious ambiguity is a common problem in many other NLP applications
 • Models with latent variables
 • Data oriented parsing (DOP)
 • Hidden Markov Models (HMM)
 •
Outline

- Hypergraph as hypothesis space

- Training methods
 (Li and Eisner, 2009)

- Exact and approximate inference

 - exact inference

 - semiring framework
 (Li and Eisner, 2009)

 - approximate inference

 - “principled” ones

 - variational decoding
 (Li et. al, 2009)

 - sampling and message passing methods

 - heuristic-based ones

 - cube-pruning
 (Chiang, 2007)

- Joshua project
 (Li et. al, 2009)
Graphical Model for Part of Speech Tagging

Variable: pos tags as values

Factor: encode transition or observation probabilities
Belief Propagation

- α sends evidence from left part of graph
- β sends evidence from right part of graph
Non-local dependency

Variable: pos tags as values

Factor: encode transition or observation probabilities

Loopy BP!
Belief Propagation for NLP

• Dependency parsing with non-local information (Smith and Eisner, 2008)

• Word alignment (Cromieres and Kurohashi, 2009)

• String to string transducers (Dreyer and Eisner, 2009)
Sampling

- **General idea**
 - Generate a randomized n-best list
 - Compute posterior or max over the randomized n-best list

- **Sampling used for MT**
 - Gibbs sampler for Bayesian inference (Blunsom et. al, 2009)
 - Gibbs sampling for MAP decoding with spurious ambiguity (Arun et. al, 2009)
 - Gibbs sampling for word alignment (Denero et. al, 2008)
Heuristic-based Approximate Inference

- Beam pruning
- Cube pruning (Chiang, 2007)
- Cube growing (Huang and Chiang, 2007)
- Forest re-ranking (Huang, 2008)
- Oracle extraction (Li and Khudanpur, 2009)
Outline

• Hypergraph as hypothesis space

• Training methods (Li and Eisner, 2009)

• Exact and approximate inference
 ▸ exact inference
 ★ semiring framework (Li and Eisner, 2009)
 ▸ approximate inference
 ★ “principled” ones
 ✓ variational decoding (Li et. al, 2009)
 ✓ sampling and message passing methods
 ★ heuristic-based ones
 ✓ cube-pruning (Chiang, 2007)

• Joshua project (Li et. al, 2009)
Conclusions

• A hypergraph is a general way to represent a hypothesis space
• Minimum risk is a promising training objective
• Semiring framework is a general way to do exact inference
• Approximate inference has great applications (e.g., variational decoding) in MT
Future: machine learning for MT

Current paradigm: Approximate model + Exact inference

- rely on a specific grammars (e.g., FST, ITG, Hiero, or GHKM)
- everything is **local**, e.g., we can’t even enforce *translation consistence* (similar words should get similar translations)
- rely on dynamic programs for exact inference

New paradigm: “Exact” model + Approximate inference

- use a flexible search space, each grammar is treated as a feature function
- include non-local dependency
- use principled approximate inference techniques, e.g., variational inference, Gibbs sampling, or belief propagation
- approximate inference calls dynamic programs for sub-steps
Joshua project
Motivation

• Towards a general purpose tree-based MT toolkit
 • string to string with latent tree structures (Chiang, 2005)
 • tree to string (Quirk et. al, 2006); (Liu et. al, 2006)
 • string to tree (Galley et. al, 2006)
 • tree to tree (Eisner, 2003)

• Successor to Moses
Joshua project

• An open-source parsing-based MT toolkit (Li et al. 2009)
 • support Hiero (Chiang, 2007) and SAMT (Venugopal et al., 2007)

• Team members
 • Zhifei Li, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Wren Thornton, Jonathan Weese, Juri Ganitkevitch, Lane Schwartz, and Omar Zaidan

Only rely on Giza++ and SRI LM!
All the methods presented have been implemented in Joshua!
Highlights

• Everything is written in Java

• easy to run under different platforms including Windows

• Easy to extend

• organize the code into packages

• define interfaces across packages

• Scalable

• decode a sentence with one second
Chart-Parsing Decoder

- Input sentences are parsed using the CKY algorithm
- Feature functions are evaluated during parsing
- High-cost constituents are pruned during parsing
- Parsing results are stored in a hypergraph
- K-best extraction is performed on the hypergraph
Suffix-Array Grammar Extraction (Lopez, 2007)

- Grammars are extracted using suffix arrays
- Grammar rules can be extracted per sentence while decoding
- Allows for very large parallel training corpora
 - eliminates traditional requirement to explicitly extract, sort, and calculate probabilities for all possible rules.
 - only extracts rules actually needed to translate the sentence
Other functions

- Minimum error rate training (MERT)
- Parallel decoding
- Distributed language models
- Variational decoding
- Semiring parsing
- Minimum risk training
- Tree and hypergraph visualization
Quick start

- Check out the software
 - `svn co https://joshua.svn.sf.net/svnroot/joshua/trunk` joshua
- Prepare monolingual and bilingual training data
- Train a language model using the SRI LM toolkit
- Train a translation model
 - sub-sample bilingual data (optional)
 - create word alignments using GIZA++
 - run suffix-array grammar extraction
- Perform minimum error rate training
- Decode test sets
Thank you!

XieXie!

谢谢!