Oracle extensions to SQL: DECODE

e DECODE is a function which Oracle provides for
conditional branching in an SQL query. The
usage of DECODE can be represented as follows:

DECODE(value, ify, thenq, ..., if,, theny, else)

To evaluate a DECODE expression, first value is
evaluated, and if there exists some if; such
that if; =value, and there is no 57 < ¢ such
that if; =value, then the expression then; is
evaluated. Otherwise, else is evaluated.

SQL> select DECODE((10/5), 1, °’VAL1’,
2, ’VAL2’,
2, ’VAL3’,
NULL) Whichval
from DUAL;

WHIC

VAL2

Oracle extensions to SQL: PL/SQL

The PL/SQL programming language is a full
procedural extension to SQL. Variable assign-
ment, conditional expressions, looping, etc.,
are all present, as is a sophisticated module
mechanism. Benefits of PL/SQL include the
following:

e Greatly increased powers of expression in
“native” database language for defining trig-
gers, system procedures, etc.

e Allows the developer to provide a uniform
and easily manipulated interface for appli-
cations which use the database.

e Promotes data abstraction and modularity.

e Language features provide easy and effec-
tive integration with the database.

Programming PL/SQL

e To compile a PL/SQL program, all you need
to do is enter the program at the SQL*Plus
prompt, either by typing it in manually, cut
and pasting it from a file, or by using the start
command to load a file (give it a .sql exten-
sion).

e If your program has compilation errors,
SQL*Plus will not be very informative at first:

S(L> create procedure empty is begin end; /

Warning: Procedure created with compilation errors.

Use the show errors command to display error
messages:

SQL> show errors
Errors for PROCEDURE EMPTY:

LINE/COL ERROR

Alternatively, we could say show errors procedure

empty In this case.

e The source code for every PL/SQL proce-
dure and function you define is stored in the
user_source View. Likewise, all your triggers
are stored in the user trigger view:

SQL> desc user_source;

Name Null? Type

NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
LINE NOT NULL NUMBER

TEXT VARCHAR2 (2000)

SQL> select text from user_source
where name = ’SHOWWEATHER’ ;

procedure showweather is
ignore boolean...

Once they are created, procedures, functions
and triggers exist in Oracle just like any other
database object. They have access permis-
sions, can be dropped, modified, etc.

Language Overview

e T he block is the basic component of all
PL/SQL programs. The basic structure of an
anonymous block is as follows:

DECLARE

variable declarations
BEGIN

main program logic
EXCEPTION

exception handling
END;

The variable declaration and exception han-
dling sections may optionally be omitted.

Here's the requisite first example:

DECLARE

mesg VARCHAR2(15) ;
BEGIN

mesg := ’Hello World!’;

dbms_output.put_line (mesg) ;
END;

e A procedure is just a named block; this nam-
ing will allow the DECLARE keyword to be omit-

ted:

CREATE OR REPLACE PROCEDURE HiWorld

IS
mesg VARCHAR2(15);

BEGIN
mesg := ’Hello World!’;

dbms_output.put_line(mesg) ;
END;
Procedures may take arguments:
CREATE OR REPLACE PROCEDURE Hello(who IN VARCHAR2)

IS
mesg VARCHAR2(15);
BEGIN
mesg := ’Hello ’ || who || ’!’;
dbms_output.put_line (mesg) ;
END;

SQL> exec Hello(’Chris?);
Hello Chris!

Note the IN keyword; this specifies that the
variable who is read-only. To specify a variable
as write only, use 0OUT, and use IN 0OUT if the
variable is to be read and written to.

e PL/SQL functions are very similar to pro-
cedures, except that parameters are read-only,
and a return type must be specified. Most im-
portantly, functions are used as parts of expres-
sions, and are not themselves PL/SQL pro-
grams.

CREATE OR REPLACE FUNCTION fact(n number)
RETURN number
IS
BEGIN
if n = 0 then
return 1;
else
return n * fact(n-1);
end if;
END;

SQL> select fact(4) from dual;

FACT(4)

Note that PL/SQL supports recursion.

e Triggers can also be defined in PL/SQL. The
syntax is similar to procedures and functions,
with special conventions for specifying the trig-
ger event (i.e., before or after an INSERT, UPDATE
or DELETE on a particular table):

CREATE OR REPLACE TRIGGER plays_for_insert
AFTER INSERT ON plays_for
FOR EACH ROW
BEGIN
UPDATE teamcount
SET cnt = cnt + 1
WHERE team_name = :new.team;
END;

The FOR EACH ROW clause specifies that the trig-
ger should be fired once for each row involved
in the transaction (“row level’). The :new syn-
tax allows the programmer to use transaction
insert values.

e Here's another example, which demonstrates
the use of the :0l1d keyword:

CREATE OR REPLACE TRIGGER account_update
BEFORE UPDATE ON account
FOR EACH ROW
BEGIN

UPDATE account

SET old_balance = :old.balance

WHERE accnt_num = :new.account_num;
END;

In general, if FOR EACH ROW is not specified, then
the trigger is “statement level”, and will be
fired only once per transaction. If a trigger is
statement level, then the usage of :new and
:0ld is disallowed (why?7).

Note the use of the BEFORE and AFTER keywords
in these examples, which specify whether the
trigger is to be fired before or after the trans-
action. In practice this ordering can be signif-
icant.

Types and variable declaration

e T he syntax for declaring variables is:
<varname> <type>;

The datatypes in PL/SQL are a superset of
those in SQL (i.e., NUMBER, VARCHAR2, etc., are
all present). Additionally, PL/SQL provides
the table type, which is similar to an array,
and also the record type, which is like a Pascal
record.

e Table types must be defined before a variable
of that table type can be declared:

DECLARE
TYPE num_table IS TABLE OF NUMBER
INDEX BY BINARY INTEGER;
ex_table num_table;
BEGIN

It is important to note that PL/SQL tables
do not have size constraints (i.e., they can
grow arbitrarily large, modulo system limits),
and PL/SQL table indices need not sequen-
tial.

e For example, the following insertions can be
made in the execution section of the block:

ex_table(1000) := 333;
ex_table(-2) := 777;

After these expressions are evaluated, ex table
will contain two values (333 and 777), indexed
by 1000 and -2.

e PL/SQL records must also be defined before
they're declared:

DECLARE
TYPE plays_for_rec IS RECORD (
pname VARCHAR2(20) ,
tname VARCHAR2(20)

)3
on_squad plays_for_rec;
BEGIN

Fields in a record are accessed by the usual
syntax:

on_squad.pname := ’Jerome Bettis’
on_squad.tname := ’Steelers’

e A very nice feature of records is that they
can allow for a very simple interaction with
SQL statements in PL/SQL procedures:

DECLARE
TYPE plays_for_rec IS RECORD (
pname VARCHAR2(20) ,
tname VARCHAR2(20)

)s

on_squad plays_for_rec;
BEGIN

SELECT name, team

INTO on_squad

FROM plays_for

WHERE name = ’Jerome Bettis’
END;

Note the use of the INTO keyword, which allows
for variable assignment in the SQL statement.

Of course, concrete type definitions for vari-
ables which manipulate database values can
lead to problems, if a relevant table's type
definitions change. For example, suppose we
change the team attribute of plays for to a
number id at some point; what happens when
you we try to execute this block?

e T his problem is resolved with the use of the
LTYPE construct, which allows type definitions

which will always match the type of the spec-
ified column:

DECLARE
TYPE plays_for_rec IS RECORD (
pname plays_for.name’,TYPE,
tname plays_for.team), TYPE

)

on_squad plays_for_rec;
BEGIN

SELECT name, team

INTO on_squad

FROM plays_for

WHERE name = ’Jerome Bettis’;
END;

With the JROWTYPE construct, things can be
made even simpler through the implicit defi-
nition of records which match the field names
and types of a database row:

DECLARE

on_squad plays_for/ROWTYPE;
BEGIN

SELECT =*

INTO on_squad

FROM plays_for ...

Control structures

e PL/SQL provides syntax for conditional ex-
pressions:

IF val < 100 THEN

val_comment := ’small’;

ELSEIF val BETWEEN 100 AND 1000;
val_comment := ’medium’;

ELSE
val_comment := ’large’;

END IF;

In general, the ELSE and each ELSEIF clause is
optional. The expression is evaluated in the
obvious manner.

e PL/SQL also provides looping constructs,
which include the “simple” loop:

LOOP
EXIT WHEN loop_counter >= 100;
dbms_output.put_line(’looping...’);
loop_counter := loop_counter + 1;
END LOOP;

e For more structured programming, PL/SQL
provides FOR and WHILE loop constructs:

WHILE loop_counter < 100 LOOP
dbms_output.put_line(’looping...’);
loop_counter := loop_counter + 1;

END LOOP;

FOR loop_counter IN 1..99 LOOP
dbms_output.put_line(’looping...’);
END LOOP;

In a numeric FOR loop, the loop counter is im-
plicitly declared as a BINARY INTEGER, assigned
the lowest number in the specified range, and
incremented after each iteration.

e Recall that PL/SQL supports recursion. How-
ever, using recursion in PL/SQL programs is
not advisable; an iterative approach is better.

cursors

e Another helpful PL/SQL feature for db in-
teraction is the cursor. A cursor is essentially a
row pointer for the relation defined by an SQL
select statement. For example:

DECLARE
on_squad plays_for/ROWTYPE;
CURSOR get_contract IS
SELECT x*
FROM plays_for;
BEGIN
OPEN get_contract;
FETCH get_contract INTO on_squad;
dbms_output.put_line(on_squad.team) ;
CLOSE get_contract;
END;

When the cursor get contract is OPENed, the
relevant SQL statement is evaluated (yielding
the “active set”), and the "“active set pointer”
associated with get contract is assigned to the
first row in the active set. Each subsequent
FETCH statement assigns the values in the active
row to the variable list or record following the
INTO keyword, and then the active set pointer
IS incremented to the next row. Cursors should
be CLOSEed at the end of the block.

e PL/SQL provides special constructs for loop-
INng with cursors:

DECLARE
on_squad plays_for/ROWTYPE;
CURSOR get_contract IS
SELECT *
FROM plays_for;
BEGIN
OPEN get_contract;
FETCH get_contract INTO on_squad;
WHILE get_contractFOUND LOOP
dbms_output.put_line(on_squad.team) ;
FETCH get_contract INTO on_squad;
END LOOP;
CLOSE get_contract;
END;

For any cursor curs, the expression cursyFOUND
evaluates to true iff the last FETCH command
returned a row. Hence, the above block will
loop through every tuple in the plays for table.
Other attributes of cursors include %NOTFOUND
(which is the negation of %FOUND), %ISOPEN (which
is true iff the associated cursor is open), and
%ROWCOUNT (which returns the number of rows
fetched so far).

e Of course, the simplest loop construct for
cursor iteration over some relation is the “cur-
sor for loop”, which makes an implicit OPEN,
FETCHes into an implicitly declared record of

appropriate type, and implicitly CLOSES on ter-
mination:

DECLARE
CURSOR get_contract IS
SELECT *
FROM plays_for;
BEGIN
FOR on_squad IN get_contract LOOP
dbms_output.put_line(on_squad.team) ;
END LOOP;
END;

Exceptions

e The exception handling segment of PL/SQL
IS easy to use:

DECLARE
program_var NUMBER;

BEGIN
EXCEPTION
WHEN ZERO_DIVIDE

INSERT INTO log_table VALUES (program_var,
END;

OTHERS Handles all exceptions.

Exceptions can be defined and explicitly raised:

DECLARE
my_exception EXCEPTION

BEGIN

RAISE my_exception;
EXCEPTION
WHEN my_exception
INSERT INTO log_table ...
END;

Packages

e PL/SQL packages are essentially modules,
and consist of a package specification and a
package body, which must match the specifi-
cation.

The following package specification provides
an interface to a sports-oriented database:

CREATE OR REPLACE PACKAGE ShowStats AS

PROCEDURE DefensiveStats
(Player IN player.name/TYPE);

PROCEDURE OffensiveStats
(Player IN player.name/TYPE);

PROCEDURE TeamStats(TEAM team.nameTYPE) ;

END;

The definitions for the procedures in this pack-
age must be made in a matching body.

e A package body must contain definitions for
at least the entities declared in the package
specification:

CREATE OR REPLACE PACKAGE BODY ShowStats AS

PROCEDURE DefensiveStats

(Player IN player.namelTYPE)
IS
END;
PROCEDURE OffensiveStats

(Player IN player.namelTYPE)
IS
END;

PROCEDURE TeamStats(TEAM team.namel,TYPE)
IS

END;

FUNCTION GetTeamId(TEAM team.name,TYPE)
RETURNS NUMBER

IS

END;

END;

e Any package body which does not match the
specification will not compile:

/* Error! body doesn’t satisfy specification */
CREATE OR REPLACE PACKAGE BODY ShowStats AS
PROCEDURE DefensiveStats
(Player IN player.name/TYPE)
IS

END;
END;

e In order to access the procedures, types and
functions in a package:

ShowStats.TeamStats(’Ravens’)

e However, any procedures, functions or types
which are defined in the package body, but
not declared in the specification, cannot be ac-
cessed:

/* Error! GetTeamlId is ‘‘private’’ */
ShowStats.GetTeamId(’Ravens’)

Other hints

e Code commenting:

-— Here’s the one line variety

/* Comments can also be broken
over multiple lines */

e A nasty fact: procedures can modify database
tables, but functions cannot.

e The truth about dbms output.put line: toO
make it work, you need to run the command:

SQL> set serveroutput on;

e \Whenever possible, fully evaluate expressions
before passing them to procedures and func-
tions:

some_procedure(varl || var2); -- No!
tmp := varl || var2; -- Concatenate strings first
some_procedure(tmp); -- Pass value to procedurev

e Try to be extra careful about program termi-
nation (PL/SQL doesn’'t handle memory over-
flow very well).

