

Additional Relational Algebra Examples

The following example illustrates how to solve aggregation problems in the Relational Algebra. Consider if you begin with a relation VISITED:

VISITED	JHEDnum	Country
	D331427	Croatia
	D331427	Italy
	D331427	Romania
	D331427	Japan
	D331427	China
	D548792	Mexico
	D548792	Peru
	D123366	Portugal
	D123366	Spain
	D123366	France

$\text{NUM_VISITED} \leftarrow \rho_{\text{NUM_VISITED}(JHEDnum, NumCountries)} \text{ JHEDnum } \mathcal{G} \text{ COUNT}(\text{Country}) \text{ VISITED}$

NUM_VISITED	JHEDnum	NumCountries
	D331427	5
	D548792	2
	D123366	3

$\text{MAX_NUM_VISITED} \leftarrow \rho_{\text{MAX_NUM_VISITED}(MaxNum)} \mathcal{G} \text{ MAX}(\text{NumCountries}) \text{ NUM_VISITED}$

MAX_NUM_VISITED	MaxNum
	5

$\text{MAX_VISITOR} \leftarrow \Pi_{JHEDnum, NumCountries} (\text{NUM_VISITED} \bowtie_{\text{NumCountries} = \text{MaxNum}} \text{ MAX_NUM_VISITED})$

MAX_VISITOR	JHEDnum	NumCountries
	D331427	5

Note that if there were two JHEDnum's who have visited 5 countries, then *both* would be listed in MAX_VISITOR as two rows. Hence both JHEDnum and NumCountries are needed as candidate key attributes.