&00.315]Y41s

o\rwo& m:.??i.\ W;Q\EQ?..@ Lp.a.,..._,.o.(. ‘A 02

type Phone: tuple (area_code: integer,

number: integer);
type Date: tuple (year: integer,
month: inleger,
day: integer);
class Person
type tuple { ssn: string, firstname: string,
name: tuple (middlename: string,
lastname; string),
number: inleger,
address: tuple (slreet: string,
apt_no: string,
city: string,
state: string,
zipcode: string),
birthdate: Date,
sex: character)
method age: integer
end
class Student Inherit Person
type tuple (class: string,

majors_in: Department,
minors_in: Department,
registered_in: set (Section),
transcript: set (tuple (grade: character,
ngrade: real,
section: Section)))
method grade_point_average: real, .
change_class: boolean,
ond change_major (new_major: Department): boolean

class Grad_Student Inherlt Student

type tuple (degrees: set (tuple { college: string,
degree: string,
year: integer)),
advisor; Facuity)
end
class Faculty inherit Person
type tuple (salary: real,
ranic string,
foffice: string,
tphone: Phone

belongs_to: set {Department),
grants: set (Grant),
advises: set (Student))

promote_facuity,
give_raise (percent: real)

method

end

class Department
type tuple (

method
end

class Section
type tuple (

method
end

class Course
type tuple (

method

majors: o.o. (Student),
chairperson: Faculty,
courses: set (Course))

add_major {s: Student),
remove_major (s: Student): boolean

sec_num: integer,

qtr: Quarter,

year: Year,

students: set (tuple (stud: Student,
grade: character)),

course: Course,

teacher: Instructor)

change_grade (s: Student, g: charactler)

cname: string,

cnumber: string,
cdescription: string,
sections: set (Section),
offering_dept: Department)

update_description (new_d: string)

0oL SalL]

Q1:select tuple (fname: s.name firstname,
. iname: s.name.lastname)
from s in Student
where s.majors_in.dname = "Computer Science”

Q2:select tuple (fname: s.name.firstname,
Iname: s.name.lastname)
transcript: select tuple (‘

- -cname: sc.section.course.cname,
sec_no; sc.section.sec_num,
quarter: sc.section.qtr,
year: sc.section.year,
grade: sc.grade)

from scin sec)
from s in Student, sec In s.transcript
where s.majors_in.dname = "Computer Science"

O ++ class Person: 02_root {
public:

Class r e prerentatsa char* ssn;

-ﬁ.ﬂ \V m~EO~7 { ‘
r o char’ firstname ;
e, char® middiename ;
char® lastname } name ;
struct {
int number
char” street ;
char* apt_no ;
char® city ;
char* state ;
char* zipcode } address ;
struct {
int year
int month
int day } birthdate ;
char sex ;

int age () ;
}

(a)
method body age: integer In class Person
{ inta;
Dated ;
d =today();
a = d->year - sell->birthdate->year ;
it (d>month < sell->birthdate->month) Il
((d->month == self->binhdate->month) && (d->day < sell->birthdate->day))
~a; /[decremenisaby1°/
retum a;
)

method body grade_point_average: real In class Student
{ foatsum=00;
intcount=0;
struct {
chargr;
float ngrade ;
02_Section sec ;
| A
for (t In self->transcript) {
sum += t->ngrade ; ++count ; 7 increments sum by ngrade, count by 1 */
]
retum sum/count ;
)

method body change_major (new_major: Depariment): boolean in class Student
{ U (seMl->major-> remove_major (seif)) {

retumO;

)

else { :

new_major-> add_major (seff) ;

self->majors_in = new_major ;

retum 1;

}
}

method body remove_major (s: Student): boolean in class Department
{ H(sin sell->majors) {
sell->majors -= set(s) ; /* -= applies set difference to remove object s from set of majors */
retlum 1 ;
}
else retum 0 ;

)

method body add_major (s: Student) In class Department
{ sell->majors += sel(s) ; /* += applies sel union to add object 8 to sel of majors */
}

®)
name Al_Persons: set (Person) /» a persistent root to hold all persistent Person objects */

name John_Smith: Person ; I a persistent root to hold a single Person object </
run body {

02 Person p = new Person ; /* creales a new Person object p */

*p = tuple (ssn: *333445555°,
name: tuple (firstname: *Franklin®, middlename: "T", lastname: "Wong®),
address: tuple (number: 638, streek: "Voss Road", city: “Houston®,
state: *Texas®, zipcode: "77079"),
birthdate: tuple (year: 1945, month: 12, day: 8),
sexc M); :
Ali_Persons += set (p) ; /* p becomes persistent by atlaching to persisient root */

I now put values in persistent named object John_Smith */
John_Smith->ssn = *123456789°,
John_Smith->name: tuple (firstname: "John®, middlename: *B", lastname: *Smith®),
John_Smith->address: tuple (number.731, streel: "Fondren Road’, city: *Houslon®,
state: “Texas®, zipcode: "77036"),
John_Smith->birthdate: tuple (year: 1955, month: 1, day: 9),
John_Smith->sex: M ;

