
Object-Oriented Database Systems
• Motivation

– Relational Models not adequate for the need of
• CAD (Computer-Aided Design)
• CASE (Computer-Aided Software Engineering)
• Geographic Databases
• Multimedia Databases

• Richer data types needed (images, audio, video,
geographical data, text)

• Need to model complex objects (design for engineering of car
in CAD, newtal documents)

• Need for better generalizational inheritance
• Long-duration transactions (problem of waits/locks)
• Temporal evolution of data (version control)

(OODBS)

Object-Oriented DBS Concepts

Objects – Real World Entities
Encapsulate state and behavior

 State: set of attribute values

 Behavior: Set of Methods

Like entities in
an ER diagram

Operations that action
objects may be uniquely
specialized

Includes methods for creation and
destruction of objects

Objects offer encapsulation of both attributes
and specialized operations/methods

OODBS Concepts (Continued)
group of objects sharing the same
attributes and methods

CLASS

e.g. employee …
department …

Individual, uniquely identified objects with
attribute values

INSTANCE

e.g. employee25 (‘John Smith’, M, 39, …)

(analogous to entity-scheme == class
entity tuple values == instance

Class : Object(instance) (OO model)

Table : Tuple (Rational model)

Entity Set : Entity (ER model)

CLASS INHERITANCE

Classes organized in a

TYPE HIERARCITY (Tree or Directed Acyclic Graph)

Like ER Diagram
ACCOUNT

CHECKING
ACCOUNT

SAVINGS
ACCOUNT

ISA

Subclass
inherits
attributes and
methods from
Superclass

STUDENT: , Major, GPA
Method, …

CLASS INHERITANCE

PERSON: Name, Address, Birthday,

 Age, SSN

EMPLOYEE: , Salary, Hiredate,

 Manager, Seniority

Method

Method

FULLTIME EMPLOYEE: , HealthPlan,
…

PART EMPLOYEE: , Hours per
week

STUDENT: , Major, GPA
method, …

CLASS INHERITANCE
PERSON: Name, Address, Birthday,

 Age, SSN

EMPLOYEE: , Salary, Hiredate,

 Manager, Seniority

Method

Method

FULLTIME

EMPLOYEE
: , Hours per week,…

PARTTIME

EMPLOYEE
: , Hours per week,… TELLER SECRETARY

FULLTIME
TELLER

PARTTIME
TELLER

Problem of Multiple Inheritance

• Inherit Attributes, methods from:
• Both/ALL superclasses

• Only dominant superclass (all cases or only where conflict)

• Ad hoc
Which is most appropriate for the
employee case?

• SELECTIVE INHERITANCE
EXCEPT (attribute/method)

Listed in subclass to indicate attributes not to be inherited

(Tuples with the same values same)

OBJECT INDENTITY

Remains invariant once object is created

Unique permanent object ID number

Unlike Relational Model where
Object ID is derived exclusively from data values

Advanced Concepts

• Polymorphism (Operator overloading)

Geometric database with multiple methods for computing
‘area’ dependent on implementation

• VERSION CONTROL

(e.g. Attribute values change over time,
 Maintain version graph to capture multiple states)

(like software version control)

(late binding of method code)

SAMPLE OODBS
• O2 (O2 Technology) -- 1991

• ObjectStore (Object Design Inc.) -- 1991

Data Definition in O2
• Atomic data types (char, int, …)

• type constructors (tuple, list, set, unique set)

• Class definitions
• attributes (have type)
• methods (have defining case)
• inherit <supertype> 

• Objects (member of a class)
Persistent or transient

multiple inheritance of all
superclass attributes

 temporary
remain after database shutdown

OODBS QUERY LANGUAGES

• Convert/Export O2 DBs into persistent
object store for use with C++

• O2SQL Language

Select tuple (fname: s.name.firstname,
 lname: s.name.lastname)
from S in Student
where S.majors_in.dname = “Computer Science”

Select firstname, lastname
from Student, majors_in
where majors_in.dname = “Computer Science”
 And majors_in.student_id = student.student_id -- Join

Condition

DOT NOTATION Join

STUDENT:

Majors_in: Department

DEPARTMENT

dname: string
S:

S.majors_in.dname = “Computer Science”

Nested dot resolution  pointer following
(like network DBS)

Takes place of Join.

Relations are poorly captured in OODBS.
One of their greatest weaknesses

BINARY RELATIONSHIPS

Major_in relation captured by “pointers” from one object to another.

Class student inherit person

 majors in: department,

end

Class department

 majors: set(student),

end

Representing Relations in OODBS

• Information duplicated:

 (space issue)

•Consistency not enforced by DBS

 - Programmer writing change-major method responsible for
 ensuring that changes to student: major_in also
 reflected/updated in department: majors: set(student)

 - This consistency NOT guaranteed so different methods of
 extracting a list of majors may yield different results.

 Jones: majors_in=‘Compute science’ but
 Jones not in ‘ComputerScience.majors’ set

Majors: set(student)
Duplicates info contained in each
Majors_in:department listing.

Problems with Relation Representation

Problems with Relational Representation
(cont)

•Relationships can’t have attributes in pointer
representation

Class employee

 works_on: set(project)

end

Class project

 members: set(employee),

end

Employee

Project

Worker on

Hours

How to represent hours worked by
each employee on each project is
problematic.

Problems with representing relations

Class employee

 works_on: set(project)

end

Class project

 members: set(employee),

end

Class project_work

 participant: employee,
 project_on: project,
 hours_worked: integer,

end

No explicit
database
support or
consistency
enforcement
-left to
programmer.

Can simulate a relation on
DB relation turned objects,
but not in spirit of OODBs.

Each employee/project
pairing is its own object.

Probably also set lists in
employee and project.

Advantages / Disadvantages of OODB
 Advantages Disadvantages

•Class inheritance

•Encapsulation of
attributes/methods

•Extensible/flexible definition
of complex data types and
methods(support for complex
objects)

•Much greater power given to
the programmer to add or
change databases semantics.

•Handling of relationships
Cumbersome
Data duplicated
Consistency not enforced

Table based representation is often more
Natural
Intuitive
Efficient

May give too much power to programmer

Integrity/consistency poorly enforced
More restrictive relational mode semantics
makes integrity correctness enforcement
easier.

	Object-Oriented Database Systems
	Object-Oriented DBS Concepts
	OODBS Concepts (Continued)
	CLASS INHERITANCE
	CLASS INHERITANCE
	CLASS INHERITANCE
	Problem of Multiple Inheritance
	OBJECT INDENTITY
	Advanced Concepts
	SAMPLE OODBS
	OODBS QUERY LANGUAGES
	DOT NOTATION Join
	Representing Relations in OODBS�
	Problems with Relation Representation�
	Problems with Relational Representation (cont)
	Problems with representing relations
	Advantages / Disadvantages of OODB

