Chapter 15: Recovery System

Failure Classification

Storage Structure

Recovery and Atomicity

Log-Based Recovery

Shadow Paging

Recovery With Concurrent Transactions
Buffer Management

Failure with Loss of Nonvolatile Storage

Advanced Recovery Techniques

Failure Classification

Logical errors: transaction cannot complete due to some
internal error condition

System errors: the database system must terminate an active
transaction due to an error condition (e.g., deadlock)

System crash: a power failure or other hardware failure causes
the system to crash

Disk failure: a head crash of similar failure destroys all or part
of disk storage

Storage Structure

e Volatile storage:

— does not survive system crashes

— examples: main memory, cache memory

e Nonvolatile storage:

— survives system crashes

— examples: disk, tape
e Stable storage:

— a mythical form of storage that survives all failures

— approximated by maintaining multiple copies on distinct
nonvolatile media

Stable-Storage Implementation

e Protect storage media from failure during data transfer; system

must maintain two physical blocks for each logical database
block.

e Execute output operation as follows:

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same
information onto the second physical block.

3. The output is completed only after the second write
successfully completes.

4 Data Access ‘

e Physical blocks are those blocks residing on the disk; buffer
blocks are the blocks residing temporarily in main memory.

e Block movements between disk and main memory are initiated
through the following two operations:

— input(B) transfers the physical block B to main memory.

— output(B) transfers the buffer block B to the disk, and
replaces the appropriate physical block there.

4 Data ,mesmmmw-

e The transfer of data between the database and program
variables is accomplished using:

— read(X) assigns the value of data item X to the local
variable x;.

x If the block Bx on which X resides is not in main
memory, then issue input(Bx).
x Assign to z; the value of X from the buffer block.

— write(X) assigns the value of local variable x; to data item
X in the buffer block.

x If block Bx is not in main memory, then issue
input(Bx).
x Assign the value of z; to X in buffer Bx.

Example of Data Transfer and Access

global buffer
A
- >
B A
\ —
— g
<
read(A) .
write(B)
A \ A
B

local buffer local buffer

T T

memory disk

4 Assumptions -

Each data item can be read and written only once by one single
transaction. It can be modified many times in the local buffer

Values are written onto the global buffer space in the same
sequential order that the write instructions are issued

If the transaction reads a value from the data base and this
value was previously modified, it always gets the latest value

Comment: a data “item” can be a file, relation, record,
physical page, etc. The choice is up to the designer.

Recovery and Atomicity

Moditfying the database without ensuring that the transaction
will commit may leave the database in an inconsistent state.

For transaction 7T; that transfers $50 from account A to
account B, goal is either to perform all database modifications
made by 7; or none at all.

If T; performed multiple database modifications, several output
operations may be required and a failure may occur after some
of these modifications have been made but before all of them
are made.

To ensure atomicity, first output information describing the
modifications to stable storage without modifying the database
itself.

Log-Based Recovery

e A log file is kept on stable storage

e When transaction T; starts, it registers itself on the log by
writing <1; start>

e Whenever T; executes write(X), the fields

— transaction name (i.e., T;)
— data item name (i.e., X)
— old value (e.g., V1)

— new value (e.g., V)

are written sequentially on the log, and then the write(X) is
executed

Log-Based Recovery (Cont.)

e When T; reaches it last statement, the record
<T; commit> is added to the log

e If X is modified then its corresponding log record is always
first actually written on the log (stable storage) and then
actually written on the database

e Before T; is committed, all its corresponding log records must
be in stable storage

Example of Recovery

e Consider transactions 77 and 75 which are executed
sequentially by the system, and with initial values of A = 100,
B =300,C =5,D =60, E =280

Ty: read(A) To: read(A)
A=A+ 50 A=A+ 10
read(B) write(A)

B := B + 100 read(D)
write(B) D =D — 10
read(C') read(E)
C = 2C read(B)
write(C) EF =F + B
A=A+ B+ C write(F)
write(A) D :=D + E

Example of Recovery (Cont.)

Log records

Database values

p—t
N

N N A o B

<Tjy start>

<T1, old B: 300, new B: 400>
<Ti,old C: 5, new C: 10>
<T1, old A: 100, new A: 560>
<17 commit>

<715 start>

<T5, old A: 560, new A: 570>
<T5, old E: 80, new E: 480>
<15, old D: 60, new D: 530>

<715 commit >

L.
IT.
I11.
IV.
V.
VI.

B

O & = » Q

400

10
560
570
480
530

Example of Recovery (Cont.)

The order of actual writes to log and database might be:
Log Database

b wdNPEF

Time 1"
[

0N O

1V

10

Example of Recovery (Cont.)

If a crash occurs, the log is examined and various actions are taken

depending on the last instruction (actually) written on it.

Last instruction (I)

Action

[=0

1 <

I

<

IN

10

4

nothing

undo(77): restore the values of the variables
modified by 77 to old values

Consequence: 77 has not run

redo(77): set the values of the variables
modified by T3 to the values created by T}
undo(73):

Consequence: 17 ran,

T5 has not run
redo (7}):

redo(73):
Consequence: 17, T5 ran

The Algorithm

e Redo all transactions for which the log has both start and
commit

e Undo all transactions for which the log has start but no
commit

e Remarks:

— In a multitasking system more than one transaction may
need to be undone

— If a system crashes during the recovery stage, the new
recovery must still give correct results

— In this algorithm, a large number of transactions need to be
redone, since we do not know how far behind the database
updates are

4 Checkpoints -

e Streamline recovery procedure by periodically performing
checkpointing

1. Output all log records currently residing in main memory
onto stable storage.

2. Output all modified bufter blocks to the disk.
3. Output a log record <checkpoint> onto stable storage.

e During recovery

— Undo all transactions that have not committed.

— Redo all transactions that have committed after checkpoint.

Example of Checkpoints

time

checkpoint system failure

e MJH ok
e 75 and I3 redone
e 7T, undone

Shadow Paging

e Alternative to log-based recovery; maintain two page tables
during the life of a transaction

— current page table

— shadow page table

e Store the shadow page table in nonvolatile storage; state of the
database prior to transaction execution may be recovered.

Shadow Paging (Cont.)

When the transaction commits, the current page table is
written to nonvolatile storage.

The current page table then becomes the new shadow page
table and the next transaction is allowed to begin execution.

Eliminates overhead of log-record output; recovery from
crashes is faster.

Drawbacks:

— data fragmentation

— garbage collection

Recovery With Concurrent Transactions

e Log scanning — when transactions execute concurrently, several
transactions may have been active at the time of the last
checkpoint.

e Concurrent transaction-processing system requires that the
checkpoint log record be of the form

<checkpoint L>

where L is a list of transactions active at the time of the
checkpoint.

e When the system recovers from a crash it constructs two lists:

— undo-list consists of transactions to be undone.

— redo-list consists of transactions to be redone.

Recovery With Concurrent Tran. (Cont.)

e Once the redo-list and undo-list have been constructed,
recovery proceeds as follows:

1. Rescan log from most recent record backward until the
<checkpoint L> record; perform undo(7;) for each T; on
the undo-list.

2. Continue to scan log backward, performing undo(7;) for
each T; on the undo-list, until the < T; starts > record for
all T; on the undo-list has been located.

3. Scan log forward from <checkpoint L> record and
perform redo(T;) for each T; on the redo-list.

e After all transactions on undo-list have been undone,
transactions on the redo-list are redone.

Buffer Management

e Log record buffering

— Transaction 7; enters the commit state after the <T;
commit> log record has been output to stable storage.

— Betfore the <T; commit> log record may be output to
stable storage, all log records pertaining to transaction 7;
must have been output to stable storage.

— Before a block of data in main memory is output to the
database, all log records pertaining to data in that block
must have been output to stable storage.

Buffer Management (Cont.)

e Database buffering — Overwrite block B; in main memory
when another block Bs needs to be brought into memory; itB;
has been modified, B; must be output prior to By’s input
(virtual memory).

— Output to stable storage all block B;’s log records.
— Output block B; to disk.
— Input block By from disk to main memory.

e If the OS cannot enforce output of log records prior to output
of database blocks, database cannot utilize virtual memory.

— DB reserves part of main memory as a buffer and manages
data block transfer; limits amount of main memory
available to the database buffer.

— DB implements its buffer within the virtual memory of the
operating system; may result in extra output of data to disk.

Failure with Loss of Nonvolatile Storage

e Periodically dump the entire content of the database to stable
storage

e No transaction may be active during the dump procedure; a
procedure similar to checkpointing must take place

— QOutput all log records currently residing in main memory
onto stable storage.

— Qutput all buffer blocks onto the disk.
— Copy the contents of the database to stable storage.
— Output a log record <dump> onto the stable storage.

Advanced Recovery Techniques

Support high-concurrency locking techniques, such as those
used for Bt-tree concurrency control; based on logical
(operation) undo, and follow the principle of repeating history.

When recovering from system failure, perform a redo pass
using the log, followed by an undo pass on the log to roll back
incomplete transactions.

Logical undo logging
Transaction rollback
Checkpoints

Restart recovery

Fuzzy checkpointing

