

VIEWS

- A **virtual relation** that is defined from other pre-existing relations ← Called the “defining relations” of the view
- A view supports multiple user perspectives on the database corresponding to different information organizations, avoiding the need for **data duplication** or information **consistency problems**
- Additional motivation: security (privacy concerns, users need only access/modify selected attributes in the data **without being able to access the other attributes**)

Differences between a Conceptual Database and a View

EXAMPLE: Airline Databases

DATA INDEPENDENCE

Logical Data Independence

- Many modifications of conceptual scheme can be made without affecting views
- No Changes in application programs necessary

Physical Data Independence

- Physical schema can be changed without alerting the conceptual level
- Allows for tuning

Analogy from the programming language world

View level

Function $f(i)$

$$f(i) = \sum_{j=1}^m A(i, j)$$

Concept Level

Integer Array

$A[1..n, 1..m]$

Physical Level

VIEW DEFINITIONS

Views are defined by a query that generates the desired virtual relation from existing relations:

In Relational Algebra:

DEPHEADS	DNAME	DNO	FNAME	LNAME
Pebody	5	Robin	Wang	
Admin	4	Jenifer	Veallau	
CS	1	James	Borg	

Create view DEPHEADS As

Π DNAME,DNUMBERS,FNAME,LNAME

(EMPLOYEE \bowtie DEPARTMENT)
MGRSSN=SSN

→ *Views typically include selected projections with optional selects and joins*

VIEWS IN SQL

CREATE VIEW DEPHEADS AS

Defining SQL Query { **SELECT** DNAME,DNUMBER,FNAME,LNAME
FROM DEPARTMENT,EMPLOYEE
WHERE DEPARTMENT.MGRSSN=EMPLOYEE.SSN

The SQL statement defining view are typically executed at query time, thus additions/changes in the defining/base relations are reflected in the virtual relation (view) transparently.

Allow Query a views:

SELECT FNAME,LNAME
FROM DEPHEADS
WHERE DNUMBER=5

The information is a virtual relation is always “up to date” (automatically reflect database update)

Complex Views

- Views may include complex calculations

```
CREATE VIEW EMP_AGE(LNAME,AGE) AS  
SELECT LNAME,MONTHS-BETWEEN(SYSDATE,BDATE)/12  
FROM EMPLOYEE
```

LNAME	AGE
SMITH	40.86
WANG	50.91
ZELAYA	38.12

Remaining attributes

Built op.

See Chapter 7

- Views creation/definition may contain aggregate operation

```
CREATE VIEW DEPT-INFO(DEPT_NAME,NUM_EMPS,TOTAL_SAL) AS
```

DEPT_NAME	NUM EMPLOYER	TOTAL SALARY
RESEACHER	4	135,000
ADMIN	3	93,000
HEADQUATER	1	35,000

```
SELECT DNAME,COUNT(*),SUM(SALARY)  
FROM DEPARTMENT, EMPLOYEE  
WHERE DNUMBER=DNO  
GROUP BY DNAME;
```

Changes to the database via views

UPDATE DEPHEAD

SET DNAME = 'research'

WHERE LNAME = 'Wallace' **OR** LNAME = 'SMITH'

Rename all departments manager by
'Wallace' or 'Smith' to 'Research'

Syntax:

UPDATE <VIEW-NAME>

SET <LIST OF CHAGES TO VIEW ATTRIBUTES>

WHERE <condition based on view attributes>

→ mapped to necessary updates in the defining relation

→ OK if simple name change

PROBLEMS WITH VIEWS

Insert into a view
based on a join

Insert into DEPHEADS
Values('SALES',6,'John','Wilson')

DEPARTMENT			
DNAME	DNO	MGRSSN	LOC
RESEARCH	5	33344455	401
ADMIN	4	98316738	201
SALES	6

EMPLOYEE					
FNAME	LNAME	SSN	BDATE	ADDRES	SAL
John	Smith	419324	11,July	223333	30000
James	Bary	123123	10 Nov	111222	55000
John	Wilson	-----	-----	-----	----

ANOMOLY

SELECT LNAME
FROM DEPHEADS
WHERE DNAME='SALES'

SELECT EMPLOYEE.LNAME
FROM DEPARTMENT,EMPLOYEE
WHERE MGRSSN=SSN
AND DNAME='SALES'

Fields null result. Join fail because null join attribute

Additional Problem with views

UPDATE DEPT_INFO

SET TOTAL_SAL = 100000

WHERE DNAME = 'RESEARCH'

Problem when view attribute is defined as an aggregate quantity

→ how can the constraint

$\text{sum}(\text{salary})=100000$

be realized as an update on the individual salary attributes for dept with > 1 employee

RESTRICTIONS ON VIEWS

to avoid consistency problems

- In general, updates are only allowed when there is only one possible update in the base relation to accomplish the view update.

- 1). A view with a single defining table is updatable, if
 - a) The view attribute contain the primary key and all other “not null” attributes.
(still problem of nulls in the defining relations)
- 2). Views defines using
 - joins
 - grouping
 - aggregate functions
 - generally not updatable

⇒ But generally no restrictions on read-only views

View Implementation Issue

Strategy #1: QUERY MAPPING

Oracle approach

Convert query on view to query on base relation

Problem: may be inefficient if the view involves complex calculation like aggregate function.

Strategy #2: VIEW MATERIALIZATION

Create temporary table to reflect the view structure

--- efficient if many queries to few updates

Temporary table must be updated (recomputed) if updates to the defining relations

--- full recomputation costly

--- minimal update difficult to determine

--- goal of avoiding data duplication

View Implementation Issue

(Runtime macro)

Strategy #1: QUERY MAPPING

Oracle approach

Convert query on view to query on base relation

Problem: may be inefficient if the view involves complex calculation like aggregate function.

Strategy #2: VIEW MATERIALIZATION

 Create temporary table to reflect the view structure

Cache

--- efficient if many queries to few updates

Temporary table must be updated (recomputed) if updates to the defining relations

--- full recomputation costly

--- minimal update difficult to determine

--- fail to avoid relational count of eliminating data duplication