Chapter 12: Query Processing

Overview

Catalog Information for Cost Estimation
Measures of Query Cost

Selection Operation

Sorting

Join Operation

Other Operations

Evaluation of Expressions
Transformation of Relational Expressions

Choice of Evaluation Plans

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization

3. Evaluation

Query —— Parser & Relational Algebra
y Trandlator Expression

<« Execution Plan

Query
Output

Evaluation Engine

Data Statistics
About Data

Basic Steps in Query Processing (Cont.)

Parsing and translation

e translate the query into its internal form. This is then
translated into relational algebra.

e Parser checks syntax, verifies relations
Evaluation

e The query-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query.

Basic Steps in Query Processing

Optimization — finding the cheapest evaluation plan for a query.

e Given relational algebra expression may have many equivalent
expressions

E.g. 0batance<2500(Tbalance (@ccount)) is equivalent to

Thalance (Tbalance<2500(account))

e Any relational-algebra expression can be evaluated in many
ways. Annotated expression specifying detailed evaluation
strategy is called an evaluation-plan.

E.g. can use an index on balance to find accounts with balance
< 2500, or can perform complete relation scan and discard
accounts with balance > 2500

e Amongst all equivalent expressions, try to choose the one with
cheapest possible evaluation-plan. Cost estimate of a plan
based on statistical information in the DBMS catalog.

Catalog Information for Cost Estimation

n,: number of tuples in relation 7.
b,.: number of blocks containing tuples of r.
s-. size of a tuple of r in bytes.

fr: blocking factor of » — i.e., the number of tuples of r that
fit into one block.

V(A,r): number of distinct values that appear in r for
attribute A; same as the size of IT4(r).

SC(A,r): selection cardinality of attribute A of relation r;
average number of records that satisfy equality on A.

If tuples of r are stored together physically in a file, then:

by = ﬁé
i

Catalog Information about Indices

e f;: average fan-out of internal nodes of index 7, for
tree-structured indices such as B-+-trees.

e HT;: number of levels in index ¢+ — i.e., the height of 1.

— For a balanced tree index (such as a B+-tree) on attribute
A of relation r, HT; = [log,;. (V(A,r)].
— For a hash index, HT; is 1.

e L B,;: number of lowest-level index blocks in 1 — i.e., the
number of blocks at the leaf level of the index.

Measures of Query Cost

Many possible ways to estimate cost, for instance disk accesses,
CPU time, or even communication overhead in a distributed or
parallel system.

Typically disk access is the predominant cost, and is also
relatively easy to estimate. Therefore number of block transfers
from disk is used as a measure of the actual cost of evaluation.
It is assumed that all transfers of blocks have the same cost.

Costs of algorithms depend on the size of the buffer in main
memory, as having more memory reduces need for disk access.
Thus memory size should be a parameter while estimating cost;
often use worst case estimates.

We refer to the cost estimate of algorithm A as E4. We do not
include cost of writing output to disk.

Selection Operation

e File scan — search algorithms that locate and retrieve records
that fulfill a selection condition.

e Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

— Cost estimate (number of disk blocks scanned) E 41 = b,
— If selection is on a key attribute, F 41 = (b,/2) (stop on
finding record)
— Linear search can be applied regardless of
x selection condition, or

* ordering of records in the file, or
x availability of indices

Selection Operation (Cont.)

o A2 (binary search). Applicable if selection is an equality
comparison on the attribute on which file is ordered.

— Assume that the blocks of a relation are stored contiguously
— Cost estimate (number of disk blocks to be scanned):

o)

* [logs(by-)| — cost of locating the first tuple by a binary
search on the blocks

* SC(A,r) — number of records that will satisfy the
selection

x |[SC(A,r)/f-| — number of blocks that these records will
occupy

— Equality condition on a key attribute: SC(A,r) = 1;
estimate reduces to Fas = [log,(b,)]

Euaz = [logy(b,)] + ﬁ

Statistical Information for Examples

faccount = 20 (20 tuples of account fit in one block)
V (branch-name, account) = 50 (50 branches)
V (balance, account) = 500 (500 different balance values)

Naccount = 10000 (account has 10,000 tuples)

Assume the following indices exist on account:

— A primary, BT-tree index for attribute branch-name

— A secondary, BT-tree index for attribute balance

Selection Cost Estimate Example

Obranch-name=“Perryridge” AQ\QQQQ\DNV

e Number of blocks is b,ccount = 900: 10,000 tuples in the
relation; each block holds 20 tuples.
e Assume account is sorted on branch-name.

— V(branch-name, account) is 50

— 10000/50 = 200 tuples of the account relation pertain to
Perryridge branch

— 200/20 = 10 blocks for these tuples

— A binary search to find the first record would take
[log2(500)] = 9 block accesses

e Total cost of binary search is 9 + 10 — 1 = 18 block accesses
(versus 500 for linear scan)

Selections Using Indices

Index scan — search algorithms that use an index; condition is
on search-key of index.

A3 (primary index on candidate key, equality). Retrieve a
single record that satisfies the corresponding equality
condition. F 43 = HT; + 1

A4 (primary index on nonkey, equality) Retrieve multiple
records. Let the search-key attribute be A.

Bas = HT; + | SS440 |

A5 (equality on search-key of secondary index).

— Retrieve a single record if the search-key is a candidate key
Eas = HT; +1

— Retrieve multiple records (each may be on a different block)

if the search-key is not a candidate key.
Eas =HT; + SC(A,r)

Cost Estimate Example (Indices)

Consider the query 18 Obranch-name=“Perryridge” AQ\QQQQS\NVQ with the
primary index on branch-name.

e Since V (branch-name, account) = 50, we expect that
10000/50 = 200 tuples of the account relation pertain to the
Perryridge branch.

e Since the index is a clustering index, 200/20 = 10 block reads
are required to read the account tuples

e Several index blocks must also be read. If BT-tree index stores
20 pointers per node, then the BT-tree index must have
between 3 and 5 leaf nodes and the entire tree has a depth of 2.
Therefore, 2 index blocks must be read.

e This strategy requires 12 total block reads.

Selections Involving Comparisons

Implement selections of the form o 4<,(r) or o4>,(r) by using a
linear file scan or binary search, or by using indices in the following
ways:

o A6 (primary index, comparison). The cost estimate is:

Pao = HIi Z

where c is the estimated number of tuples satisfying the

condition. In absence of statistical information ¢ is assumed to
be n,. /2.

o AT (secondary index, comparison). The cost estimate is:

LB; -
m_x:|mm4 4+ — |TQ
ny

where c is defined as before. (Linear file scan may be cheaper if
c is large!)

Implementation of Complex Selections

The selectivity of a condition 6; is the probability that a tuple
in the relation r satisfies #,. If s; is the number of satisfying
tuples in 7, ;’s selectivity is given by s;/n,.

Conjunction: og, rg,a...ne, (7). The estimate for number of
tuples in the result is:

S1 %89 k...%S8,

Ny *
n
nn

Disjunction: oy, vg,v...ve, (r). Estimated number of tuples:

S2

e (1— (01— D)1 2y s v (- 20
()

" e o
Negation: o_y(r). Estimated number of tuples:

n, — size(og(r))

Algorithms for Complex Selections

A8 (conjunctive selection using one index). Select a
combination of §; and algorithms A1l through A7 that results in
the least cost for oy, (r). Test other conditions in memory
buffer.

A9 (conjunctive selection using multiple-key index). Use
appropriate composite (multiple-key) index if available.

A10 (conjunctive selection by intersection of identifiers).
Requires indices with record pointers. Use corresponding index
for each condition, and take intersection of all the obtained sets
of record pointers. Then read file. If some conditions did not
have appropriate indices, apply test in memory.

A11 (disjunctive selection by union of identifiers). Applicable
if all conditions have available indices. Otherwise use linear
scan.

Example of Cost Estimate for Complex Selection

e Consider a selection on account with the following condition:
where branch-name = “Perryridge” and balance = 1200

e Consider using algorithm AS:

— The branch-name index is clustering, and if we use it the
cost estimate is 12 block reads (as we saw before).

— The balance index is non-clustering, and
V (balance, account) = 500, so the selection would retrieve
10,000/500 = 20 accounts. Adding the index block reads,
gives a cost estimate of 22 block reads.

— Thus using branch-name index is preferable, even though its
condition is less selective.

— If both indices were non-clustering, it would be preferable to
use the balance index.

Example (contd.)

e Consider using algorithm A10:

— Use the index on balance to retrieve set S; of pointers to
records with balance = 1200.

— Use index on branch-name to retrieve set Sy of pointers to
records with branch-name = “Perryridge”.

— 51 N Sy = set of pointers to records with branch-name =
“Perryridge” and balance = 1200.

— The number of pointers retrieved (20 and 200) fit into a
single leaf page; we read four index blocks to retrieve the
two sets of pointers and compute their intersection.

— Estimate that one tuple in 50 x 500 meets both conditions.
Since Ngecount = 10000, conservatively overestimate that
S1 N S contains one pointer.

— The total estimated cost of this strategy is five block reads.

4 Sorting -

e We may build an index on the relation, and then use the index
to read the relation in sorted order. May lead to one disk block
access for each tuple.

e For relations that fit in memory, techniques like quicksort can
be used. For relations that don’t fit in memory, external
sort-merge is a good choice.

External Sort—Merge

Let M denote memory size (in pages).
1. Create sorted runs as follows. Let ¢ be 0 initially. Repeatedly

do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks

(c) Write sorted data to run R;; increment i.

2. Merge the runs; suppose for now that ¢ < M. In a single merge
step, use 7 blocks of memory to buffer input runs, and 1 block
to buffer output. Repeatedly do the following until all input
buffer pages are empty:

(a) Select the first record in sort order from each of the buffers

(b) Write the record to the output

(¢) Delete the record from the buffer page; if the buffer page is
empty, read the next block (if any) of the run into the
bufter.

Example: External Sorting Using Sort—Merge

a |19 2 119
24
g d |31 b |14 a |14
a |19
g c |33 il
d|31 14
b |14 d |3l P
c |33
T3 e |16 c |33
b 14 d| 7
e |16 g|24
e |16 d|21
r (16 d |21 T d|31
d|21 ml 3 e |16
d| 7
m| 3 g|24
r |16 d 121
pl|2 m| 3
d|7 a |14 m 3 p |2
2
a |14 d|7 P r |16
NE r |16
Initial Sorted
Relation Runs Runs Output
Cresate Merge Merge

Runs Pass 1 Pass 2

External Sort—Merge (Cont.)

e If + > M, several merge passes are required.

— In each pass, contiguous groups of M — 1 runs are merged.

— A pass reduces the number of runs by a factor of M — 1,
and creates runs longer by the same factor.

— Repeated passes are performed till all runs have been
merged into one.

e Cost analysis:

— Disk accesses for initial run creation as well as in each pass
is 2b, (except for final pass, which doesn’t write out results)

— Total number of merge passes required: [log,, (b./M)].

Thus total number of disk accesses for external sorting:
br(2[log sy (br/M)] + 1)

Join Operation

e Several different algorithms to implement joins

— Nested-loop join

— Block nested-loop join
— Indexed nested-loop join
— Merge-join

— Hash-join

e Choice based on cost estimate

e Join size estimates required, particularly for cost estimates for
outer-level operations in a relational-algebra expression.

Join Operation: Running Example

Running example:

depositor X customer

Catalog information for join examples:

® Ncustomer — H_.Ou 000.

® feustomer = 25, which implies that
beustomer = 10000/25 = 400.

® Ndepositor = 9000.
® fdepositor = o0, which implies that
bdepositor = 0000/50 = 100.
o V (customer-name, depositor) = 2500, which implies that, on
average, each customer has two accounts.

Also assume that customer-name in depositor is a foreign key on
customer.

Estimation of the Size of Joins

e The Cartesian product r X s contains n,ns tuples; each tuple
occupies s, + Sg bytes.

e f RN S =0, then r X sis the same asr X s.

o If R N S is a key for R, then a tuple of s will join with at most

one tuple from r; therefore, the number of tuples in r X s is no
greater than the number of tuples in s.

If RN.S in S is a foreign key in S referencing R, then the
number of tuples in r X s is exactly the same as the number of
tuples in s.

The case for R N S being a foreign key referencing S is
symietric.

e In the example query depositor X customer, customer-name in
depositor is a foreign key of customer; hence, the result has
exactly ngepositor tuples, which is 5000.

Estimation of the Size of Joins (Cont.)

o If RNS ={A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R X S,
number of tuples in R X S is estimated to be:

Ny * Mg

V(A,s)

If the reverse is true, the estimate obtained will be:

Ny * Mg

V(A1)

The lower of these two estimates is probably the more accurate
one.

Estimation of the Size of Joins (Cont.)

e Compute the size estimates for depositor X customer without
using information about foreign keys:

— V(customer-name, depositor) = 2500, and
V (customer-name, customer) = 10000

— The two estimates are 5000 x 10000/2500 = 20, 000 and
5000 * 10000/10000 = 5000

— We choose the lower estimate, which, in this case, is the
same as our earlier computation using foreign keys.

Nested-Loop Join

e Compute the theta join, r Xy s

for each tuple ¢, in » do begin
for each tuple t5 in s do begin
test pair (¢,,ts) to see if they satisfy the join condition 6
if they do, add t, - t5 to the result.
end
end

e 1 is called the outer relation and s the inner relation of the
join.

e Requires no indices and can be used with any kind of join
condition.

e Expensive since it examines every pair of tuples in the two
relations. If the smaller relation fits entirely in main memory,
use that relation as the inner relation.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one
block of each relation, the estimated cost is n, * by + b, disk
accesses.

If the smaller relation fits entirely in memory, use that as the
inner relation. This reduces the cost estimate to b, + b, disk
accesses.

Assuming the worst case memory availability scenario, cost
estimate will be 5000 %400+ 100 = 2, 000, 100 disk accesses with

depositor as outer relation, and 10000 x 100 + 400 = 1, 000, 400
disk accesses with customer as the outer relation.

If the smaller relation (depositor) fits entirely in memory, the
cost estimate will be 500 disk accesses.

Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

e Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.
for each block B, of r do begin
for each block B, of s do begin
for each tuple ¢, in B, do begin
for each tuple t5 in B, do begin
test pair (¢,,ts) for satisfying the join condition
if they do, add ¢, - t5 to the result.
end
end
end

end
e Worst case: each block in the inner relation s is read only once

for each block in the outer relation (instead of once for each
tuple in the outer relation)

Block Nested-Loop Join (Cont.)

e Worst case estimate: b, *x by + b, block accesses. Best case:
b, + b, block accesses.

e Improvements to nested-loop and block nested loop algorithms:

— If equi-join attribute forms a key on inner relation, stop
inner loop with first match

— In block nested-loop, use M — 2 disk blocks as blocking unit
for outer relation, where M = memory size in blocks; use
remaining two blocks to buffer inner relation and output.
Reduces number of scans of inner relation greatly.

— Scan inner loop forward and backward alternately, to make
use of blocks remaining in buffer (with LRU replacement)

— Use index on inner relation if available

Indexed Nested-Loop Join

If an index is available on the inner loop’s join attribute and
join is an equi-join or natural join, more efficient index lookups
can replace file scans.

Can construct an index just to compute a join.

For each tuple ¢, in the outer relation r, use the index to look
up tuples in s that satisty the join condition with tuple ..
Worst case: buffer has space for only one page of » and one
page of the index.

— b, disk accesses are needed to read relation r, and, for each
tuple in r, we perform an index lookup on s.

— Cost of the join: b, + n, * ¢, where c is the cost of a single
selection on s using the join condition.

If indices are available on both r and s, use the one with fewer
tuples as the outer relation.

Example of Index Nested-Loop Join

Compute depositor X customer, with depositor as the outer
relation.

Let customer have a primary BT -tree index on the join
attribute customer-name, which contains 20 entries in each
index node.

Since customer has 10,000 tuples, the height of the tree is 4,
and one more access is needed to find the actual data.

Since Ngepositor 15 9000, the total cost is
100 4 5000 % 5 = 25,100 disk accesses.

This cost is lower than the 40, 100 accesses needed for a block
nested-loop join.

Merge—Join -

1. First sort both relations on their join attribute (if not already
sorted on the join attributes).

2. Join step is similar to the merge stage of the sort-merge
algorithm. Main difference is handling of duplicate values in
join attribute — every pair with same value on join attribute
must be matched

or al a2 s al a3

——|a| 3 —|a|A
b1l b| G
d| 8 c|L
d|13 d|N
f |7 m|B
m{ 5
qg| 6

Merge—Join (Cont.)

e Each tuple needs to be read only once, and as a result, each
block is also read only once. Thus number of block accesses is
b, + bs, plus the cost of sorting if relations are unsorted.

e Can be used only for equi-joins and natural joins

e If one relation is sorted, and the other has a secondary BT-tree
index on the join attribute, hybrid merge-joins are possible.
The sorted relation is merged with the leaf entries of the
BT-tree. The result is sorted on the addresses of the unsorted
relation’s tuples, and then the addresses can be replaced by the
actual tuples efficiently.

Hash—Join -

e Applicable for equi-joins and natural joins.

e A hash function A is used to partition tuples of both relations
into sets that have the same hash value on the join attributes,
as follows:

— h maps JoinAttrs values to {0, 1,...,max}, where
JoinAttrs denotes the common attributes of » and s used in
the natural join.

- H,.,,H.,...,H,. _ denote partitions of r tuples, each
initially empty. Each tuple ¢, € r is put in partition H,_,
where ¢ = h(t,.[JoinAttrs]).

- Hs,,Hg,,...., Hs
initially empty. Each tuple ¢4 € s is put in partition Hy,,
where ¢ = h(ts[JoinAttrs]).

denote partitions of s tuples, each

Hash—Join (Cont.)

e 7 tuples in H,, need only to be compared with s tuples in Hg_;
they do not need to be compared with s tuples in any other
partition, since:

— An r tuple and an s tuple that satisfy the join condition will
have the same value for the join attributes.

— If that value is hashed to some value ¢, the r tuple has to be
in H,, and the s tuple in H,,.

Hash—Join (Cont.)

St
Hwnva
[N
3| |— |3
Al |4

Partitions Partitions
of r of s

Hash—Join algorithm

The hash-join of and s is computed as follows.

1. Partition the relations s using hashing function 2. When
partitioning a relation, one block of memory is reserved as the
output buffer for each partition.

2. Partition r similarly.

3. For each 1:

(a) Load Hg, into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h.

(b) Read the tuples in H,., from disk one by one. For each tuple
tr locate each matching tuple ¢5 in H,, using the in-memory
hash index. Output the concatenation of their attributes.

Relation s is called the build input and r is called the probe
input.

Hash—Join algorithm (Cont.)

e The value max and the hash function h is chosen such that
each Hg, should fit in memory.
e Recursive partitioning required if number of partitions max
is greater than number of pages M of memory.
— Instead of partitioning max ways, partition s M — 1 ways;
— Further partition the M — 1 partitions using a difterent hash
function
— Use same partitioning method on r
— Rarely required: e.g., recursive partitioning not needed for
relations of 1GB or less with memory size of 2MB, with

block size of 4KB.

e Hash-table overflow occurs in partition H, it H, does not
fit in memory. Can resolve by further partitioning H,, using
different hash function. H,, must be similarly partitioned.

Cost of Hash—Join

If recursive partitioning is not required: 3(b, + bs) + 2 * max

If recursive partitioning is required, number of passes required
for partitioning s is [logas—1(bs) — 1]. This is because each
final partition of s should fit in memory.

The number of partitions of probe relation r is the same as
that for build relation s; the number of passes for partitioning
of r is also the same as for s. Therefore it is best to choose the
smaller relation as the build relation.

Total cost estimate 1is:
NA?; + @mv _|N©.Q§|HA®MV | H._ + @ﬁ + @m

If the entire build input can be kept in main memory, max can
be set to 0 and the algorithm does not partition the relations
into temporary files. Cost estimate goes down to b, + bs.

Example of Cost of Hash—Join

customer X depositor

Assume that memory size is 20 blocks.
@&mﬁo,mioea = 100 and @o:mﬁOﬁ;mﬁ = 400.

depositor is to be used as build input. Partition it into five
partitions, each of size 20 blocks. This partitioning can be done
in one pass.

Similarly, partition customer into five partitions, each of size
80. This is also done in one pass.

Therefore total cost: 3(100 + 400) = 1500 block transfers
(Ignores cost of writing partially filled blocks).

Hybrid Hash—Join

Useful when memory sizes are relatively large, and the build
input is bigger than memory.

With a memory size of 25 blocks, depositor can be partitioned
into five partitions, each of size 20 blocks.

Keep the first of the partitions of the build relation in memory.
It occupies 20 blocks; one block is used for input, and one block
each is used for buffering the other four partitions.

customer is similarly partitioned into five partitions each of
size 80; the first is used right away for probing, instead of being
written out and read back in.

Ignoring the cost of writing partially filled blocks, the cost is
3(80 + 320) + 20 + 80 = 1300 block transfers with hybrid
hash-join, instead of 1500 with plain hash-join.

Hybrid hash-join most useful if M >> 1/b;.

Complex Joins

e Join with a conjunctive condition:

r XS NOasA...NOB,, S

— Compute the result of one of the simpler joins r My, s

— final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

0L A ... ANOi_1 ANOii1 A... N6,

— Test these conditions as tuples in r Xy, s are generated.

e Join with a disjunctive condition:

r XS VOsV.. V0, S

Compute as the union of the records in individual joins 7 My, s:

(r Mg, s)U(r Ny, s)U...U(r Xy s)

Complex Joins (Cont.)

Join involving three relations: loan X depositor X customer

Strategy 1. Compute depositor X customer; use result to
compute loan X (depositor X customer)

Strategy 2. Compute loan X depositor first, and then join the
result with customer.

Strategy 3. Perform the pair of joins at once. Build an index
on [oan for loan-number, and on customer for customer-name.

— For each tuple ¢ in depositor, look up the corresponding
tuples in customer and the corresponding tuples in [oan.

— Each tuple of deposit is examined exactly once.

Strategy 3 combines two operations into one special-purpose
operation that is more efficient than implementing two joins of
two relations.

Other Operations

e Duplicate elimination can be implemented via hashing or
sorting.

— On sorting duplicates will come adjacent to each other, and
all but one of a set of duplicates can be deleted.

Optimization: duplicates can be deleted during run
generation as well as at intermediate merge steps in external
sort-merge.

— Hashing is similar — duplicates will come into the same
bucket.

e Projection is implemented by performing projection on each
tuple followed by duplicate elimination.

Other Operations (Cont.)

e Aggregation can be implemented in a manner similar to
duplicate elimination.

— Sorting or hashing can be used to bring tuples in the same
group together, and then the aggregate functions can be
applied on each group.

— Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values.

e Set operations (U, N and —): can either use variant of
merge-join after sorting, or variant of hash-join.

Other Operations (Cont.)

e E.g., Set operations using hashing;:

1. Partition both relations using the same hash function,

and Hy,,..., H

2. Process each partition ¢ as follows. Using a different hashing
function, build an in-memory hash index on H,, after it is

thereby creating H,.., ..., H

Tmax? Smazx*

brought into memory.

3. — rUs: Add tuples in H,, to the hash index if they are not
already in it. Then add the tuples in the hash index to
the result.

— r N s: output tuples in H,, to the result if they are
already there in the hash index.

— r — s: for each tuple in Hy,, if it is there in the hash
index, delete it from the index. Add remaining tuples in
the hash index to the result.

Other Operations (Cont.)

e Outer join can be computed either as
— A join followed by addition of null-padded non-participating
tuples.
— by modifying the join algorithms.

e Example:

— In » X s, non participating tuples are those in
r— Ig(r X s)

— Modity merge-join to compute » X s: During merging, for
every tuple ¢, from r that do not match any tuple in s,
output ¢, padded with nulls.

— Right outer-join and full outer-join can be computed
similarly.

Evaluation of Expressions

e Materialization: evaluate one operation at a time, starting at
the lowest-level. Use intermediate results materialized into
temporary relations to evaluate next-level operations.

e F.g., in figure below, compute and store opaiance<2500(account);
then compute and store its join with customer, and finally

compute the projection on customer-name.
Uocmﬁogm,-sm._\:m

X

Dom_ ance < 2500 customer

account

Evaluation of Expressions (Cont.)

Pipelining: evaluate several operations simultaneously,
passing the results of one operation on to the next.

E.g., in expression in previous slide, don’t store result of
Tpalance<2500(account) — instead, pass tuples directly to the
join. Similarly, don’t store result of join, pass tuples directly to
projection.

Much cheaper than materialization: no need to store a
temporary relation to disk.

Pipelining may not always be possible — e.g., sort, hash-join.
For pipelining to be effective, use evaluation algorithms that

generate output tuples even as tuples are received for inputs to
the operation.

Pipelines can be executed in two ways: demand driven and
producer driven.

Transformation of Relational Expressions

e Generation of query-evaluation plans for an expression involves
two steps:

1. generating logically equivalent expressions

2. annotating resultant expressions to get alternative query
plans

e Use equivalence rules to transform an expression into an
equivalent one.

e Based on estimated cost, the cheapest plan is selected. The
process is called cost based optimization.

Equivalence of Expressions

Relations generated by two equivalent expressions have the same
set of attributes and contain the same set of tuples, although their
attributes may be ordered differently.

Docﬂo_ﬁmq -hame
Uocmﬁogm. -name

Chranch-ci ty[Brooklyn

\ / 8503 -cityCBrooklyn

branch \ / \ /
account depositor branch account depositor
(@) Initial Expression Tree (b) Transformed Expression Tree

Equivalent expressions

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

061 N6 Amv = 06, AQGM Amvv
2. Selection operations are commutative.

79,(06,(E)) = 09,(00, (E))

3. Only the last in a sequence of projection operations is needed,
the others can be omitted.

g, (Hp, (... (g, (E))...) = Iz, ()

4. Selections can be combined with Cartesian products and theta
joins.
(a) oa(E1 x E3) = E1 My Ey
A.Uv D.%H AmH Z%w mwv — m_H X%H\/%w MM

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
FEi Yo By = Eo Xy Ej
6.(a) Natural join operations are associative:
(E1 X E))X Ey = F1 X (Ea X Es)
(b) Theta joins are associative in the following manner:
(B1 Mo, E2) Mo ng, B3 = E1 Mg, pe, (F2 Mg, E3)

where 6, involves attributes from only E5 and Fs.

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join
operation under the following two conditions:

(a) When all the attributes in 6y involve only the attributes of
one of the expressions (E7) being joined.

09, (E1 Mg E2) = (06,(E1)) Mg E2

(b) When 6, involves only the attributes of E; and 65 involves
only the attributes of Ej.

oo, ne, (E1 Mg E2) = (09, (E1)) Mg (00, (F2))

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join
operation as follows:

(a) if 6 involves only attributes from L; U Ls:

Ip,ur, (E1 Mg Ez) = (I, (Ep)) Mg (I, (E2))

(b) Consider a join E; My E5. Let Ly and Ly be sets of
attributes from F; and FEs, respectively. Let L3 be
attributes of E; that are involved in join condition 6, but
are not in L1 U Lo, and let L4 be attributes of F5 that are
involved in join condition €, but are not in L; U Ls.

r,ur,(E1 We Ez) =1lp,ur, (Hz,ur,(E1)) WMo (Ilz,uz, (E2)))

10.
11.

12.

Equivalence Rules (Cont.)

. The set operations union and intersection are commutative (set

difference is not commutative).

EF1 U By = FEe U Ey
Ei N Ey = FEy N By

Set union and intersection are associative.

The selection operation distributes over U,N and —. E.g.:
Q.TANH — mwv — QwAmHv — Q.WANMV

For difference and intersection, we also have:
QWAMH — mwv = D.NUA@HV — MM

The projection operation distributes over the union operation.
I (E1UEp) = (IIL(Eq)) U (HL(E2))

Selection Operation Example

e Query: Find the names of all customers who have an account
at some branch located in Brooklyn.

moﬁﬂoj@mﬁlzaﬁ;m Aq@ﬁ@:oblnﬁw = “Brooklyn”

(branch X (account X depositor)))
e Transformation using rule 7a.

H_H_Hﬁﬁm.hcsmﬁlzgsm

AAQ.@Q;QSQTQQQ = “Brooklyn” QS;Q\SQFVV
X (account X depositor))

e Performing the selection as early as possible reduces the size of
the relation to be joined.

Selection Operation Example (Cont.)

Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.

Ho@m#oﬁ;mﬁlz@ﬁ;m Aqgﬁzoblni@” “Brooklyn” A balance >1000
(branch X (account X depositor)))

Transformation using join associativity (Rule 6a):

Hoﬁm@oﬁ;mﬁl:@ﬁ;m AAQ.?a@zobuoi@H “Brooklyn” A balance>1000
(branch M account)) X depositor)

Second form provides an opportunity to apply the “perform
selections early” rule, resulting in the subexpression

Obranch-city = “Brooklyn” Qwﬁ@ﬁhbv X Obalance>1000 AQ\QQO@SAV

Thus a sequence of transformations can be useful

Projection Operation Example

Eo:mwogmﬁnin:;m AAQ.?;@:Q?S@@ = “Brooklyn” Qvﬂgj\m\@v
X account) X depositor)

e When we compute

AQ@S,;%-QSH:waoow;\sg (branch) X account)

we obtain a relation whose schema is:

(branch-name, branch-city, assets, account-number, balance)

e Push projections using equivalence rules 8a and 8b; eliminate
unneeded attributes from intermediate results to get:

mm:mﬂos.mﬁl:@Sm A Am@nmoﬁzﬂuzﬁgvmﬁ A

(Cbranch-city = “Brooklyn” (branch)) X account)) M depositor)

Join Ordering Example

e For all relations rq, 79, and rs,

AﬁHX ﬁwvz rs — %HZ Aﬁwz ﬁwv
o If ro X 13 is quite large and 71 X ry is small, we choose
(ry X ry) X rg

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)

e Consider the expression

mm:mwOSmﬁusgﬁ;m AAQ@ﬁazomnoi@H “Brooklyn” Quﬂ@ﬁﬁ\@vv
X account X depositor)

e Could compute account X depositor first, and join result with

Obranch-city = “Brooklyn” Qwﬁ@ﬁﬁ\@v

but account X depositor is likely to be a large relation.

e Since it is more likely that only a small fraction of the bank’s
customers have accounts in branches located in Brooklyn, it is
better to compute

Obranch-city = “Brooklyn” QS;@\:\Q\& X account

first.

Evaluation Plan

An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.
Ceustomer-name (Sort to remove duplicates)

| (hash-join)
\ /
X (merge-join) depositor
Pipeline Pipeline
Lhranch-ci ty5Brooklyn Lhalance < 1000
(useindex 1) (use linear scan)
branch account

An evaluation plan

Choice of Evaluation Plans

e Must consider the interaction of evaluation techniques when
choosing evaluation plans: choosing the cheapest algorithm for
each operation independently may not yield the best overall
algorithm. E.g.

— merge-join may be costlier than hash-join, but may provide
a sorted output which reduces the cost for an outer level
aggregation.

— nested-loop join may provide opportunity for pipelining

e Practical query optimizers incorporate elements of the
following two broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.
2. Use heuristics to choose a plan.

Cost-Based Optimization

Consider finding the best join-order for r; X ro X ... 71,,.

There are (2(n — 1))!/(n — 1)! different join orders for above
expression. With n = 7, the number is 665280, with n = 10,
the number is greater than 176 billion!

No need to generate all the join orders. Using dynamic
programming, the least-cost join order for any subset of
{ri,ro2,...,rn} is computed only once and stored for future use.

This reduces time complexity to around O(3™). With n = 10,
this number is 59000.

Cost-Based Optimization (Cont.)

e In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

e If only left-deep join trees are considered, cost of finding best

join order becomes O(2").

> >

VRN N

r5 <] >

N, VAN
VRN
>

;\ /5

(@) Left-deep Join Tree (b) Non-left-deep Join Tree

r3 r

Dynamic Programming in Optimization

e To find best left-deep join tree for a set of n relations:

— Consider n alternatives with one relation as right-hand-side
input and the other relations as left-hand-side input.

— Using (recursively computed and stored) least-cost join
order for each alternative on left-hand-side, choose the
cheapest of the n alternatives.

e To find best join tree for a set of n relations:

— To find best plan for a set S of n relations, consider all
possible plans of the form: S; X (S — S1) where 57 is any
non-empty subset of S.

— As before, use recursively computed and stored costs for
subsets of S’ to find the cost of each plan. Choose the
cheapest of the 2™ — 1 alternatives.

Interesting Orders in Cost-Based Optimization

e Consider the expression (r; X ro X rg) X ry X rg

e An interesting sort order is a particular sort order of tuples
that could be useful for a later operation.

— Generating the result of r{ X ro X r3 sorted on the
attributes common with r4 or r5 may be useful, but
generating it sorted on the attributes common to only 7
and ro is not useful.

— Using merge—join to compute r1 X ro X r3 may be costlier,
but may provide an output sorted in an interesting order.

e Not sufficient to find the best join order for each subset of the
set of n given relations; must find the best join order for each
subset, for each interesting sort order of the join result for that
subset. Simple extension of earlier dynamic programming
algorithms.

Heuristic Optimization

e Cost-based optimization is expensive, even with dynamic
programming.

e Systems may use heuristics to reduce the number of choices
that must be made in a cost-based fashion.

e Heuristic optimization transforms the query-tree by using a set
of rules that typically (but not in all cases) improve execution
performance:

— Perform selection early (reduces the number of tuples)

— Perform projection early (reduces the number of attributes)

— Perform most restrictive selection and join operations before
other similar operations.

e Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

Steps in Typical Heuristic Optimization

. Deconstruct conjunctive selections into a sequence of single
selection operations (Equiv. rule 1).

Move selection operations down the query tree for the earliest
possible execution (Equiv. rules 2, 7a, 7b, 11).

Execute first those selection and join operations that will
produce the smallest relations (Equiv. rule 6).

Replace Cartesian product operations that are followed by a
selection condition by join operations (Equiv. rule 4a).

Deconstruct and move as far down the tree as possible lists of

projection attributes, creating new projections where needed
(Equiv. rules 3, 8a, 8b, 12).

Identify those subtrees whose operations can be pipelined, and
execute them using pipelining.

Structure of Query Optimizers

e The System R optimizer considers only left-deep join orders.
This reduces optimization complexity and generates plans
amenable to pipelined evaluation.

System R also uses heuristics to push selections and projections
down the query tree.

e For scans using secondary indices, the Sybase optimizer takes
into account the probability that the page containing the tuple
is in the buffer.

Structure of Query Optimizers (Cont.)

e Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

— System R and Starburst use a hierarchical procedure based
on the nested-block concept of SQL: heuristic rewriting
followed by cost-based join-order optimization.

— The Oracle7 optimizer supports a heuristic based on
available access paths.

e Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

This expense is usually more than offset by savings at
query-execution time, particularly by reducing the number of
slow disk accesses.

