
Dependable AI for Traffic Light Control
Systems

by

Jerry Chen

A project report submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Master of Science in Engineering

Baltimore, Maryland

December, 2021

Advisors: Dr. Amir Yair, Brian Wheatman

© 2021 by Jerry Chen

All rights reserved



Acknowledgments

I would like to thank Brian Wheatman for his contributions to this work,
along with his continued support and guidance. Brian started this project and
had a vision on how to design different types of white-box monitors and the
white-box decision module, leading to the full RADICS architecture we have
today. He is also very knowledgeable in performance engineering and helped
reduce some overhead in SUMO.

I would also like to express my gratitude to my advisor, Dr. Yair Amir, who
helped me in countless ways throughout my last two years at Johns Hopkins
University. He was my professor in Distributed Systems and Advanced Dis-
tributed Systems and Networks. I’ve been working as his teaching assistants
for the past three semesters. His passion on helping students and contributing
to the society truly inspired me.

Additionally, I would like to thank Sahiti Bommareddy, who helped setup
our simulation environment. She also offered tremendous help with my
projects when I was taking the Distributed Systems course.

This work is supported in part by the Johns Hopkins Institute for Assured
Autonomy.

ii



Table of Contents

Table of Contents iii

1 Introduction 1

2 Related Work 3

3 Simulation 4

4 Reinforcement Learning 6

5 RADICS 9

6 Evaluation 15

7 Conclusion 22

References 23

iii



1 Introduction

Traffic has become a serious issue as more people are moving to metro areas.
From a report by the Texas Transportation Institute, drivers in the U.S. spend
around 42 hours in traffic every year, which wastes over 3 billion gallons of
fuel [1]. Not only does traffic jam wastes time and resources, it also pollutes
the environment. According to the United States Population Fund [2] and
the Population Reference Bureau [3], these problems may get worse in the
future because the population is growing and moving to urban areas in many
countries. The current traffic light infrastructure is obsolete and cannot meet
the demand of modern cities. We need a smart traffic light system.

In recent years, AI/ML deep neural networks (DNN) have brought dra-
matic improvements to diverse tasks such as automatic speech recognition,
natural language processing, image recognition, medical image analysis, bioin-
formatics, and autonomous driving. An AI-based traffic light can reduce
driving time and save resources. In this report, we present a Reinforcement
Learning (RL) based intelligent traffic light control system.

AI-based systems also come with a major limitation: it is difficult to un-
derstand how exactly these systems work and predict when and how they
will fail. In the vast majority of cases, these systems outperform traditional
systems. However, in edge cases, they fail in unexpected ways [4].

To leverage the exceptional performance brought by AI-based systems
while keeping the system safe, we introduce RADICS: Runtime Assurance
of Distributed Intelligent Control System, which uses black and white box
monitoring to create a dependable system that achieves good performance on
average, without suffering from failures caused by edge cases.

A black-box monitor ensures the correctness of the system by detecting
when the system performance is on a failure trajectory and rescues the system
by switching to a safe controller that guarantees an acceptable level of perfor-
mance. The AI controller takes over the control of the system when the safe
controller has righted the system.

A white-box monitor help improve the performance by predicting when
the system might begin a failure trajectory. The white-box monitor can mea-
sure the confidence level of the AI controller. If the AI controller is uncertain

1



about the correct action, it might be worth switching to the safe algorithm
sooner to avoid paying the full cost associated with declining performance to
the black-box threshold.

We evaluate RADICS on different adverse traffic scenarios and show how
one can use RADICS to construct dependable AI systems. With both black
and white box monitoring, RADICS is able to protect the system from crashes
during adverse events while still allowing for the AI controller to improve the
overall system performance.

2



2 Related Work

Traffic light systems have been computerized after the invention of the com-
puter in 1960s. By monitoring traffic and running optimization algorithms on
computers, we develop better traffic light algorithms over time [1].

Google is among the first to bring a smart traffic light system to the real
world. After a successful implementation of the AI-based traffic light system
in Israel, Google claims that the new system cuts the fuel consumption and
traffic delays at intersections by 10% to 20% , with a concern that letting AI
make all decisions could potentially be risky [5].

Several approaches have been proposed to improve dependability in AI-
based systems, such as using Baysian inference and model ensembles [6]. Ad-
ditionally, new classifiers, such as uncertainty-based OOD-classifier (UBOOD),
can be used to detect an AI model’s uncertainty when encountering out-of-
distribution (OOD) data [6]. In this report, one of the white-box monitors
we introduce is similar to the model ensembles method, but instead of us-
ing different model architectures, we train multiple models with varying
randomization.

Black-box monitoring is also commonly used when developing depend-
able AI systems [7]. For instance, Soter, a robotics programming framework,
includes a black-box based integrated runtime assurance (RTA) system that
allows the use of uncertified components, while still providing safety guaran-
tees [8]. However, only using a black-box monitor limits the types of switching
mechanisms that can be used. Sometimes, these systems are overly conser-
vative, such as in [9] and [10], where once the system has switched to a safe
controller, it remains there until reset manually. Our work aims to develop
methods in addition to black-box monitoring to make AI systems dependable
while still benefiting from its performance.

The Simulation of Urban Mobility (SUMO) is an open source traffic simu-
lation framework mainly developed by employees of the Institute of Trans-
portation Systems at the German Aerospace Center [11]. SUMO is highly
cuztomizable. It allows users to define traffic patterns, driver behaviors, traffic
light algorithms, roads and lanes. SUMO also provides APIs to control traffic
lights at runtime. We use SUMO to create our traffic simulation environment.

3



3 Simulation

We create a realistic traffic simulation using SUMO. In our simulation, we
define a two-by-two grid with 2 lanes on each road, on which vehicles can
turn left or go straight on the left lane and the right lane is right turn only. We
define outside edges as edges on which vehicles enter the grid. As shown in
Figure 1, there are 8 outside edges in the grid. Inflow vehicles have a 1

6 chance
of turning either direction at each intersection. The rest of the vehicles will go
straight and exit the grid. Each vehicle can turn at most once.

Figure 1: Traffic Simulation

Occasionally, two vehicles can collide with one another at an intersection to
simulate car crashes in real life. We teleport these vehicles to their destination
roads as if they went through the intersection smoothly. Drivers are allowed
to speed up when going through an intersection and use the emergency brake
when needed.

Each simulation step is equivalent to 0.1 seconds in real time. We define
the traffic light algorithm as follows: green light for 26 seconds, yellow light
for 3 seconds, left-turning green light for 5 seconds, yellow light for 3 seconds,
red light for 26 seconds, yellow light for 3 seconds. All traffic lights are
synchronized to create a flow, as seen in Figure 2, so that vehicles can travel
from one side of the grid to the other without stopping or slowing down.

4



Figure 2: Vehicle Flow

This static traffic light algorithm can guarantee that any vehicle that is
going straight will stop at most once at an intersection, even when there is an
overwhelming amount of cars in the grid.

5



4 Reinforcement Learning

We implement a deep reinforcement learning (RL) AI traffic light controller
using the FLOW framework [12], which is built on top of TensorFlow, Stable
Baselines, and SUMO [11]. We use Proximal Policy Optimization (PPO) [13]
algorithm to train RL models because PPO performs comparably or beter
than the state-of-the-art RL algorithms and it is simple to implement and tune
[14]. Specifically, we use the PPO2 model from Stable Baselines, which is an
implementation of PPO using OpenAI gym. It uses vectorized environments
for mutiprocessing.

Figure 3: RL Observations

We take a monolithic approach when training the AI. In our single-agent RL
setup, we pass the information of vehicles, traffic lights, and traffic condition
on each edge, to the RL agent. The following describes the full details of the
feature vector:

• Current speeds of observed vehicles1 in the grid

1We define observed vehicles as the top three vehicles that are closest to an intersection

6



• Distance to the intersection that a vehicle is heading to for all observed
vehicles

• IDs of edges which each observed vehicle is on.

• Information about density of cars for each edge

• Average speed of vehicles of each edge

• Number of time steps since last time a light has changed for all traffic
lights

• The direction in which a light is allowing cars to go for all traffic lights

• Whether a light is currently yellow for all traffic lights

The model was trained with an inflow of 500 vehicles per hour on each
outside edge for 80 million simulation steps. In our simulations, arrived
vehicles are defined as vehicles that reach their destinations and exit the grid.
After every 3000 time steps, we calculate the average speed of all vehicles in
the system, reset the simulation environment, and use the following reward
function to update the model:

Average speed of all vehicles + 1.67 × Number of arrived vehicles

Table 1: Average speed of all vehicles in a simulation of 3000 steps when using a
model trained with different duration.

Steps Average Speed (m/s)

50,000 1.98
10,000,000 3.02
20,000,000 3.75
30,000,000 5.66
40,000,000 5.54
50,000,000 6.00
60,000,000 6.35
70,000,000 6.37
80,000,000 6.46

they are heading to, on each lane. These vehicles are marked blue in Figure 3. Thus, there can
be at most 6 observed vehicles on each edge.

7



Table 1 shows the training progress over time. The improvement of the RL
model is significant. We used a learning rate of 5 × 10−4 initially. Then we
changed the learning rate to 1 × 10−4 after the performance stops to improve
at 40 million steps. After 80 million steps, the model outperforms the static
traffic light algorithm by 10% to 20%.

8



5 RADICS

RADICS is an architecture for creating high efficient, dependable AI systems
by combining highly accurate AI techniques with monitors to ensure correct-
ness. RADICS uses both black and white box monitoring to maintain high
accuracy, while ensuring correctness. We first describe how to use black-box
monitoring in a standard simplex-like approach and then extend this to take
advantage of white-box monitoring. Lastly, we present the complete RADICS
architecture in the context of traffic simulation.

Black-box Monitoring

Black-box monitoring is a standard approach for creating reliable systems.
A black-box monitoring system involves four major components: a safe con-
troller, which is able to control the situation in an acceptable manner; an
untrustworthy controller, which has better average performance, but may
suffer from unacceptable faults; a monitor, which looks at the state of the
entire system and determines if the system is in a good state; and a decision
module, which chooses which controller to use at any point in time.

The safe controller is fully capable of controlling the system in any state.
It can be a simple, static algorithm, which has theoretical guarantees about
its performance. However, this safety often comes at a cost and thus the safe
controller is expected to have worse performance on average. In situations
where provably good safe controllers are hard to create, the need for them can
be alleviated with a small amount of risk. If the problem is currently being
solved, then there is some solution which has an acceptable level of risk. This
solution can be used instead of a provably safe controller and RADICS will
allow the overall system performance to increase, while still only failing in
the situations where the existing solution would fail.

The AI controller is also capable of controlling the overall system. It should,
on average, outperform the safe controller. However, the AI system may incur
unacceptable faults. AI systems are expected to be able to perform much better
on the common cases, but current research indicates that there will always
be edge cases or adversarial scenarios that exist and cannot be eliminated by
more training, thus the need for a higher level system such as RADICS [15].

9



The black-box monitor observes the overall state of the system determines
how far the system is from breaking any invariant. To ensure correctness,
the black-box monitor must always be able to determine when the system
is within some distance from any failure state. This is equivalent to saying
which state from Figure 4 we are in.

Figure 4: Black-box monitoring decision module

The decision module is responsible for determining when the system
should switch between controllers based on the output of the black-box moni-
tor, as explained in Figure 5. It chooses to switch to the safe controller when
the system is in the Danger Region so that it can ensure correctness. To im-
prove overall performance, it switches the system to an AI controller when it
determines that the system is in the Safe Region.

One inherent limitation with black-box monitoring is that it can cause
oscillations when the system is under a scenario which the AI controller cannot
handle. As the system performance degrades and enters the Danger Region,
the black-box decision module will switch to the safe controller, which recovers
the performance and brings the state back to the Safe Region. However,
the scenario hasn’t changed yet and the decision module will soon switch
the system to the safe controller again. Another limitation with black-box
monitoring is that it does not recognize the bad situation until we are already

10



Figure 5: Black-box monitoring diagram

in the Danger Region. This performance drop, along with the oscillation issue,
can be alleviated by introducing white-box monitoring to the system.

White-box Monitoring

We introduce white-box monitoring, which can look into the state of the AI
controller and predict when the AI controller is likely to make a mistake so
that it can switch to the safe controller before the black-box monitor can detect
anything is wrong.

The main task of the white-box monitor is to determine how confident
the AI controller is in its decision. We extend the decision module for white-
box monitoring by adding the Questionable Region, which can be seen in
Figure 6. A white-box monitor will first measure the confidence level of the
AI controller. If the AI controller is confident, the system will allow the AI to
take control up until the Danger Region is reached. The higher the confidence,
the further into the Questionable Region the decision module will allow
the system to progress before switching to the safe controller. This can help
mitigate the performance drop caused by not switching to the safe controller
early enough.

11



Figure 6: White-box monitoring decision module

To avoid the oscillation issue when switching back to the AI controller,
we use the white-box monitor to measure the AI controller’s confidence level
when the system reaches the Questionable Region. We only switch to the AI
controller if the confidence score is high.

We describe three types of white-box monitors.The first type uses the in-
formation that the AI system already calculates in its prediction. For example,
in PPO models, one of the final steps is a score for each possible decision with
its likelihood of being chosen. One can look at the magnitude of the score of
the chosen decision to determine its confidence, or how likely it was to choose
its selected option compared to any other option. If many possible options
have similar scores, or the selected option has a low score, it indicates that the
AI controller may have low confidence in its decision. This approach is very
cheap since it does not require any additional calculation.

Another option is to train multiple models with different randomization.
We then compare the results of these models to the result of the AI controller
with a given state. If all models agree with the AI controller’s decision, then
the AI controller has a high confidence and the current state is likely a scenario

12



that the AI can recognize. The less the models agree with the AI controller, the
lower the confidence is. This monitor has a high start-up cost because training
multiple models can take a significant amount of time and computational
resources, but evaluating them is very cheap.

The third option is a simulation-based white-box monitor, which constantly
runs a test simulation of the near past to simulate the near future. We assume
that the near past is similar to the near future. If the test simulation yields good
performance, then the AI controller has a high confidence score. Similarly, if
the test simulation performs poorly with an input from the near past, then one
can assume that the same controller will also perform poorly in the future. This
monitor is the most costly one because it requires computational resources to
run test simulations all the time.

Figure 7: RADICS Architecture

RADICS Architecture

By combining the black and white box monitoring, we present the complete
RADICS architecture, as shown in Figure 7. The white-box monitor measures
the confidence level of the AI controller and reports it to the white-box de-
cision module while the black-box monitor observes the state of the system.
The white-box decision then recommends a decision to the black-box deci-
sion module. The black-box decision module then makes a decision upon
receiving the black-box monitor’s output and the white-box decision module’s

13



suggestion. The black-box monitor’s output always takes precedence over the
white-box decision module’s suggestion when switching to the safe controller
so that the safety of the system can be guaranteed. The white-box monitoring
can help predict future faults and also alleviate the oscillation concerns.

In the context of traffic simulations, we use the static traffic light algorithm,
which is described in Section 3, as the safe controller. The model trained
after 80 million steps will be used as the AI controller. We will examine the
effectiveness of RADICS in the next section.

14



6 Evaluation

We evaluate the RADICS approach by making an AI-based traffic light system
dependable. We first describe three traffic scenarios that will be used to
evaluate the system. Then, we measure and compare the effectiveness of
the different white-box monitors in detecting adverse events. Lastly, we
present the evaluation of the full RADICS system. We show that without any
monitoring, the system performance crashes when encountering an adverse
event. Black-box monitoring prevents the full performance impact from the
adverse events. The addition of white-box monitors help detect these events
sooner and give us better overall system performance.

Traffic Scenarios

Recall that the AI is trained on 500 vehicles per hour on all outside edges.
We describe the following adverse scenarios under which the AI controller
underperforms:

• Adverse Scenario 1: 500 vehicles per hour on all but 1 outside edge
which has 100 vehicles per hour.

• Adverse Scenario 2: 100 vehicles per hour on all outside edges

• Adverse Scenario 3: 500 vehicles on two outside edges on the same side,
no cars on any other edge.

Table 2: Average speed of each controller in meters per second in the different
scenarios

Controller Safe Controller AI Controller

Trained Scenario 5.67 6.27
Adverse Scenario 1 6.17 2.86
Adverse Scenario 2 6.93 5.35
Adverse Scenario 3 5.37 1.34

The performance of both controllers under different scenarios is shown
in Table 2. The AI controller’s performance crashes in all adverse scenarios

15



while the safe controller is not affected at all. In the trained scenario, the AI
controller outperforms the safe controller by over 10%.

We then define three traffic scenarios that corresponds to the three adverse
scenarios. Each traffic scenario starts with the trained scenario for 10,000 steps,
after which an adverse scenario runs for 3,000 steps. Then, the trained scenario
runs for another 12,000 steps. For example, Traffic Scenario 1 has the Adverse
Scenario 1 in the middle. These traffic scenarios are used to evaluate monitors
and the full RADICS system.

Monitor Evaluation

Monitors are designed to detect when an adverse event has happened so that
the system can switch to the safe controller from the AI controller. The sooner
the system can detect this event, the smaller the performance impact from the
event is.

Figure 8: The confidence scores from each white-box monitor around traffic scenario
1, between time steps 10,000 and 13,000; the rest of the time is the trained scenario.

We measure the effectiveness of the white-box monitors by running them
with the AI controller the entire time under the Traffic Scenario 1. Figure 8
shows the confidence scores of each monitor, which are normalized to the
average of each score to put them on the same scale. All monitors are able to
detect when the adverse event has happened. The magnitude of the drop is
not important, only that the drop can be easily identified. After the adverse
scenario has ended, the confidence scores of these monitors increase to the
regular level.

16



The time it takes for each monitor to detect each of the adverse scenarios
is given in Table 3. The sooner the system can identify a problem the sooner
the safe controller can take over and rectify the situation. We find that the
simulation-based white-box monitor detects the adverse scenarios quicker
than the other white-box monitors. However, it is also the most expensive
white-box monitor among all three since the system needs to consume com-
putational resources and constantly run test simulations in the background.
The state-based monitor is slightly less performant but more cost-friendly
than the multi-model white-box monitor - training multiple AI models takes
a significant amount of time. All white-box monitors detect the issue much
sooner than the black-box monitor.

Table 3: Time after the start of an adverse event when each monitor signals low
confidence.

Monitor Scenario 1 Scenario 2 Scenario 3 Average

Black-Box 1418 969 859 1082
State Information 592 665 566 607
Multi-Model 562 652 467 560
Simulation 406 666 484 518

Full System Evaluation

We present the evaluation of the RADICS system for traffic light control in
full details. We evaluate four different controllers: the safe controller, the AI
controller, a black-box monitoring approach, and RADICS with both black
and white-box monitoring.

We evaluate the system using the aforementioned traffic scenarios, which
are designed to show how well the controller can detect an adverse scenario
and protect from the impact of the adverse scenario using the safe controller
when necessary, and how they can switch back to the AI controller once the
environment returns to a trained scenario.

17



Figure 9: The rolling average of the speed of all vehicles in the system over time
under adverse scenario 1 for Segment 2. We evaluate four different controllers: the
safe controller, the AI controller, a black-box monitoring approach, and RADICS with
both black and simulation-based white-box monitoring. Horizontal lines show the
average speed of each controller in each segment, whereas vertical lines mark the
start and end of the anomalous scenario. We use the dotted line when a safe controller
is in control and the solid line when an AI controller is.

Figure 10: The normalized average speed of AI-based controllers with respect to the
safe controller. We divided the average speeds of AI-based controllers in Figure 9 by
the average speed of the safe controller.

Figure 9 shows how well each controller performs with traffic scenario 1
when using a simulation-based white-box monitor. Additionally, we normal-
ize the average speed of AI-based controllers with respect to the safe controller
in Figure 10. We see that in Segment 1, all AI-based systems run identically,
since they all run the same AI controller. We notice that the AI controller
outperforms the safe controller under the trained scenario. When Segment

18



2 begins, we see all AI-based controllers dip in performance; however, both
monitoring based ones are able to catch the drop in performance and res-
cue the system. The addition of the simulation-based white-box monitor in
RADICS is able to catch the anomaly sooner, and as such, performs better.
The simple AI controller cannot handle the untrained scenario - the system
crashes and recovers slowly when the system returns to a trained scenario.

During Segment 2, the RADICS controller with both monitors switches to
the safe controller much earlier than the one with only a black-box monitor.
This is because the white-box monitor successfully detects the anomaly based
on the inflow from the near past sooner than the black-box monitor was able
to detect it. With only the black-box monitor, the RADICS controller oscillates
between the AI and safe controllers since the system decides to switch to the
AI controller each time the safe controller brings the performance up. On the
other hand, RADICS with both monitors determines that the system is still
in the anomalous case by constantly running test simulations and then stays
with the safe controller.

Figure 11: The average speed of all vehicles in the system over time with adverse
scenario 2.

Similarly, Figure 11 and 12 show the performance of different controllers
with adverse scenario 2 and 3 respectively. In scenario 2 we observe the black-
box monitoring approach performing better than the full RADICS approach,
this is due to it switching back the the AI controller as soon as the safe con-
troller stopped the fall of the system and the AI managing to perform well
in an untrained scenario for a short time. Overall, we still note that in this
situation both monitoring approaches significantly outperform just the AI on
its own. In traffic scenario 3, we observe that the AI controller is not able to
recover after the decline of its performance. The accumulation of vehicles

19



Figure 12: The average speed of all vehicles in the system over time with adverse
scenario 3.

pushes the state of the AI controller to the Failed Region.

Table 4 shows the evaluation of RADICS under all three traffic scenarios.
In adverse scenario 1 and 2, the AI controller has a worse performance in
Segment 2 and is able to recover in Segment3. The AI controller crashes in
adverse scenario 3, and its performance keep decreasing in Segment 3. In
all scenarios, both state-based and multi-model RADICS cannot switch back
to the AI controller because the state generated by the safe controller is too
different from what the AI controller was trained on. To enable the use of
these styles of white-box monitors for the switch back, the AI would need to
be specifically trained on situations that arise from running the safe controller
so that it can be confident in these situations. Without this specific training,
the confidence scores from the state-based and multi-model monitors remain
low during Segment 3.

Overall, a system with any monitoring approach performs better than
either controller alone. White-box monitors can detect the adverse event
sooner than the black-box monitor. Therefore, on average, RADICS systems
have a superior overall performance to a system with black-box monitoring
only. We also generated simulation videos for all systems in each scenario to
visualize their differences in performance.

20



Table 4: Average speed of each controller in meters per second. Segments 1 and 3
are the trained scenarios, while Segment 2 is an anomalous scenario. We see that
during Segment 1, all AI based controllers perform the same and outperform the
safe controller. Small differences in Segment 1 are from randomness since some
monitoring approaches advance the random number generator. During the anomaly
in Segment 2, the AI crashes, but RADICS is able to rescue the system from performing
poorly, just using a black-box monitor is able to control the crash, but not as well.

Adverse Scenario 1

Controller Overall Segment 1 Segment 2 Segment 3

Safe controller 5.64 5.60 5.90 5.60
AI Controller 5.53 6.23 3.42 5.47
Black-Box 5.76 6.23 4.66 5.63
RADICS State Info 5.89 6.25 5.74 5.62
RADICS Multi-Model 5.89 6.25 5.73 5.62
RADICS Simulation 6.06 6.23 5.65 6.01

Adverse Scenario 2

Safe controller 5.66 5.57 6.30 5.55
AI Controller 5.65 6.21 3.69 5.68
Black-Box 6.18 6.21 5.69 6.29
RADICS State Info 5.86 6.20 5.66 5.60
RADICS Multi-Model 5.86 6.20 5.66 5.60
RADICS Simulation 6.01 6.20 5.47 5.99

Adverse Scenario 3

Safe controller 5.58 5.58 5.38 5.64
AI Controller 3.24 6.11 1.62 1.06
Black-Box 5.59 6.12 3.65 5.65
RADICS State Info 5.75 6.13 4.96 5.62
RADICS Multi-Model 5.75 6.13 5.00 5.62
RADICS Simulation 5.95 6.13 4.96 6.06

21



7 Conclusion

We have introduced an AI-based traffic light control system. The traffic simu-
lation was developed using SUMO. To construct a more realistic simulation
environment, we allowed randomness in driver behaviors, such as vehicles
accidents at intersections. Drivers can also choose to change lanes as they
wish. We also defined a provably safe traffic light algorithm that guarantees
an acceptable level of performance.

We used PPO as the reinforcement learning algorithm to train the AI
model with a traffic inflow of 500 vehicles per hour on each input edge. After
80 million simulation steps, the AI achieves exceptional performance. The
training took about two weeks in our environment.

We presented two approaches in achieving AI dependability, black and
white box monitoring. We introduced three types of white-box monitors that
have varying costs and effectiveness. The simulation-based white-box monitor
can detect an adverse scenario faster than the other two, but it is also the most
expensive monitor because one needs to constantly run test simulations in
the background. The multi-model white-box monitor is cheaper but has a
high start-up cost. The state-based monitor costs the least since no additional
computation is needed to use it. All white-box monitors can detect an adverse
event quicker than a black-box monitor. We then combined black and white
box monitoring and described the RADICS approach.

Lastly, we defined three adverse scenarios to showcase the effectiveness of
three white-box monitors and the RADICS approach. Our evaluation showed
that the RADICS approach can achieve better performance than using the safe
controller alone, while guaranteeing the safety of the system.

22



References

[1] J. Palša, L. Vokorokos, E. Chovancová, and M. Chovanec, “Smart cities
and the importance of smart traffic lights,” in 2019 17th International
Conference on Emerging eLearning Technologies and Applications (ICETA),
pp. 587–592, 2019.

[2] R. Kollodge, B. Crossette, and R. Froseth, “Unfpa: State of world popula-
tion 2011,” 2011.

[3] PRB, “2016 world population data sheet: With a special focus on human
needs and sustainable resource,” 2016.

[4] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are eas-
ily fooled: High confidence predictions for unrecognizable images,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 427–436, 2015.

[5] C. Low, “Google turns its ai on traffic lights to reduce pollution,” Oct
2021.

[6] A. Sedlmeier, T. Gabor, T. Phan, L. Belzner, and C. Linnhoff-Popien,
“Uncertainty-based out-of-distribution detection in deep reinforcement
learning,” CoRR, vol. abs/1901.02219, 2019.

[7] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D.
Stoller, “Neural simplex architecture,” in NASA Formal Methods Sympo-
sium, pp. 97–114, Springer, 2020.

[8] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari, “Soter: a
runtime assurance framework for programming safe robotics systems,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 138–150, IEEE, 2019.

[9] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture for
safe online control system upgrades,” in Proceedings of the 1998 American
Control Conference. ACC (IEEE Cat. No. 98CH36207), vol. 6, pp. 3504–3508,
IEEE, 1998.

[10] D. Seto and L. Sha, “A case study on analytical analysis of the inverted
pendulum real-time control system,” tech. rep., CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1999.

23



[11] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Mi-
croscopic traffic simulation using sumo,” in The 21st IEEE International
Conference on Intelligent Transportation Systems, IEEE, 2018.

[12] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: Ar-
chitecture and benchmarking for reinforcement learning in traffic control,”
arXiv preprint arXiv:1710.05465, p. 10, 2017.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.

[14] J. Schulman, “Proximal policy optimization,” Sep 2020.

[15] A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Goldstein, “Are
adversarial examples inevitable?,” ArXiv, vol. abs/1809.02104, 2019.

24


	Table of Contents
	Introduction
	Related Work
	Simulation
	Reinforcement Learning
	RADICS
	Evaluation
	Conclusion
	References

