Distributed Submodular Maximization in Massive Datasets

Huy L. Nguyen

Joint work with
Rafael Barbosa, Alina Ene, Justin Ward
Combinatorial Optimization

• Given
 – A set of objects V
 – A function f on subsets of V
 – A collection of feasible subsets I

• Find
 – A feasible subset of I that maximizes f

• Goal
 – Abstract/general f and I
 – Capture many interesting problems
 – Allow for efficient algorithms
Submodularity

We say that a function $f : 2^V \to \mathbb{R}_+$ is submodular if:

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$$

We say that f is monotone if:

$$f(A) \leq f(B), \quad \forall A \subseteq B$$

Alternatively, f is submodular if:

$$f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B)$$

for all $A \subseteq B$ and $x \notin B$

Submodularity captures diminishing returns.
Submodularity

Examples of submodular functions:

- The number of elements covered by a collection of sets
- Entropy of a set of random variables
- The capacity of a cut in a directed or undirected graph
- Rank of a set of columns of a matrix
- Matroid rank functions
- Log determinant of a submatrix of a psd matrix
Example: Multimode Sensor Coverage

- We have distinct locations where we can place sensors
- Each sensor can operate in different modes, each with a distinct coverage profile
- Find sensor locations, each with a single mode to maximize coverage
Example: Identifying Representatives In Massive Data
Example: Identifying Representative Images

- We are given a huge set X of images.
- Each image is stored multidimensional vector.
- We have a function d giving the difference between two images.
- We want to pick a set S of at most k images to minimize the loss function:

$$L(S) = \frac{1}{|X|} \sum_{e \in X} \sum_{r \in S} \min d(e, r)$$

- Suppose we choose a distinguished vector e_0 (e.g. 0 vector), and set:

$$f(S) = L(\{e_0\}) - L(S \cup \{e_0\})$$

- The function f is submodular. Our problem is then equivalent to maximizing f under a single cardinality constraint.
Need for Parallelization

• Datasets grow very large
 – TinyImages has 80M images
 – Kosarak has 990K sets

• Need multiple machines to fit the dataset

• Use parallel frameworks such as MapReduce
Problem Definition

• Given set V and submodular function f
• Hereditary constraint I (cardinality at most k, matroid constraint of rank k, ...)
• Find a subset that satisfies I and maximizes f
• Parameters
 - $n = |V|$
 - $k = \text{max size of feasible solutions}$
 - $m = \text{number of machines}$
Greedy Algorithm

Initialize $S = {}$

While there is some element x that can be added to S:

Add to S the element x that maximizes the marginal gain $f(S \cup \{x\}) - f(S)$

Return S
Greedy Algorithm

- Approximation Guarantee
 - $1 - \frac{1}{e}$ for a cardinality constraint
 - $\frac{1}{2}$ for a matroid constraint
- Inherently sequential
- Not suitable for large datasets
Distributed Greedy
Performance of Distributed Greedy

• Only requires 2 rounds of communication
• Approximation ratio is:

\[O\left(\frac{1}{\sqrt{\min(m, k)}}\right) \]

(where \(m \) is number of machines)
• Can construct bad examples
• Lower bounds for the distributed setting

(Indyk et al. ’14)
Power of Randomness
Power of Randomness

• Randomized distributed Greedy
 – Distribute the elements of V randomly in round 1
 – Select the best solution found in rounds 1 & 2

• Theorem: If Greedy achieves a C approximation, randomized distributed Greedy achieves a $C/2$ approximation in expectation.

• Related results: [Mirrokni, Zadimoghaddam '15]
Intuition

• If elements in OPT are selected in round 1 with high probability
 – Most of OPT is present in round 2 so solution in round 2 is good

• If elements in OPT are selected in round 1 with low probability
 – OPT is not very different from typical solution so solution in round 1 is good
Power of Randomness

• Randomized distributed Greedy
 – Distribute the elements of V randomly in round 1
 – Select the best solution found in rounds 1 & 2

• Provable guarantees
 – Constant factor approx for several constraints

• Generality
 – Same approach to parallelize a class of algorithms
 – Only need a natural consistency property
 – Extends to non-monotone functions
Optimal Algorithms?

- Near-optimal algorithms?
- Framework to parallelize algorithms with almost no loss?

YES, using a few more rounds
Core Set
Core Set

Send Core Set
to every machine
Core Set
Core Set
Core Set

Grow Core Set over $1/\varepsilon$ rounds
Core Set

Grow Core Set over $\frac{1}{\varepsilon}$ rounds
Core Set

Grow Core Set over $1/\varepsilon$ rounds
Core Set

Grow Core Set over $1/\varepsilon$ rounds

Leads to only an ε loss in the approximation

Intuition
Each round adds an ε fraction of OPT to the Core Set
Matroid Coverage Experiments

Matroid Coverage (n=900, r=5)

Matroid Coverage (n=100, r=100)

It's better to distribute ellipses from each location across several machines!
Thank You!

Questions?