A New Approach for Distribution Testing

Ilias Diakonikolas
Edinburgh \(\rightarrow\) USC

Joint work with
Daniel Kane (UCSD)
What this talk is about

Basic object of study:
Probability distributions over finite domain.

\[[n] = \{1, \ldots, n\} \quad \text{or} \quad [n]^d \]

Notation:
\[p, q: \text{ pmf} \]
Explaining the title:

- Let \mathcal{D} be a family of probability distributions

Example:

Testing Closeness Problem:
- Distinguish between the cases $p=q$ and $\text{dist}(p, q) > \varepsilon$
- Minimize **sample size**, computation time

Total Variation Distance

$$d_{TV}(p, q) = \frac{1}{2} \|p - q\|_1$$
Simple Framework for Distribution Testing:
Leads to sample-optimal and computationally efficient estimators
for a variety of properties.
Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness and Independence
- Future Directions and Concluding Remarks
Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness and Independence
- Future Directions and Concluding Remarks
Distribution Testing (Hypothesis Testing)

Given samples (observations) from one (or more) unknown probability distribution(s) (model), decide whether it satisfies a certain property.

- Introduced by Karl Pearson (1899).

- Classical Problem in Statistics
 [Neyman-Pearson’33, Lehman-Romano’05]

- Last fifteen years (TCS): property testing
 [Goldreich-Ron’00, Batu et al. FOCS’00/JACM’13]
Related Work – Property Testing (I)

Focus has been on arbitrary distributions over support of size n.

Testing Identity to a known Distribution:

- [Goldreich-Ron’00]: $O(\sqrt{n}/\epsilon^4)$ upper bound for *uniformity testing* (collision statistics)
- [Batu et al., FOCS’01]: $\tilde{O}(\sqrt{n}) \cdot \text{poly}(1/\epsilon)$ upper bound for testing identity to any *known* distribution.
- [Paninski ’03]: upper bound of $O(\sqrt{n}/\epsilon^2)$ for uniformity testing, assuming $\epsilon = \Omega(n^{-1/4})$. Lower bound of $\Omega(\sqrt{n}/\epsilon^2)$.
- [Valiant-Valiant, FOCS’14, D-Kane-Nikishkin, SODA’15]: upper bound of $O(\sqrt{n}/\epsilon^2)$ for identity testing to any known distribution.
Related Work – Property Testing (II)

Focus has been on arbitrary distributions over support of size n.

Testing Closeness between two *unknown* distributions:

- [Batu *et al.*, FOCS’00]: $O\left(n^{2/3} \log n / \epsilon^{8/3}\right)$ upper bound for testing closeness between two unknown discrete distributions.

- [P. Valiant, STOC’08]: lower bound of $\Omega\left(n^{2/3}\right)$ for constant error.

- [Chan-D-Valiant-Valiant, SODA’14]: tight upper and lower bound of

\[
O\left(\max\{n^{2/3} / \epsilon^{4/3}, n^{1/2} / \epsilon^2\}\right)
\]
Related Work – Property Testing (III)

Focus has been on arbitrary distributions over support of size n.

Testing Independence of a distribution on $[n] \times [m]$:

- [Batu et al., FOCS’01]: $\tilde{O}(n^{2/3}m^{1/3} \cdot \text{poly}(1/\epsilon))$ upper bound.

- [Levi-Ron-Rubinfeld, ICS’11]: lower bounds for constant error $\Omega(m^{1/2}n^{1/2})$ and $\Omega(n^{2/3}m^{1/3})$, for $n = \Omega(m \log m)$

- [Acharya-Daskalakis-Kamath, NIPS’15]: upper bound of $O(n/\epsilon^2)$ for $n=m$.
Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness and Independence
- Future Directions and Concluding Remarks
Framework and Results

• **Approach**: Optimal Reduction of L1 Testing to L2 testing

 1) Transform given distribution(s) to new distribution(s) (over potentially larger domain) with small L2 norm.

 2) Use standard L2 tester as a black-box.

• Circumvents method of explicitly learning heavy elements [Batu et al., FOCS’00]
L2 Closeness Testing

Lemma 1: Let p, q be unknown distributions on a domain of size n. There is an algorithm that uses

\[O(\min\{\|p\|_2, \|q\|_2\}n/\varepsilon^2) \]

samples from each of p, q, and with probability at least 2/3 distinguishes between the cases that $p = q$ and $\|p - q\|_1 \geq \varepsilon$.

Basic Tester [CDVV’14, similar to Batu et al.’00]:

- Calculate $Z = \sum_i \{(X_i - Y_i)^2 - X_i - Y_i\}$
- If $Z > \varepsilon^2 m^2$ then output “No” (different), otherwise, output “Yes” (same)

Very simple tester and analysis.
Algorithmic Results

Sample Optimal Testers for:

- Identity to a Fixed Distribution
- Closeness between two Unknown Distributions
- Closeness with unequal sample size
- Independence (in any dimension)
- Properties of Collections of Distributions (Sample & Query model)
- Histograms
- Other Metrics

All algorithms follow same pattern. Very simple analysis.
Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness and Independence
- Future Directions and Concluding Remarks
Warm-up: Testing Identity to Fixed Distribution (I)

Let p be unknown distribution and q known distribution on $[n]$.

Main Idea: “Stretch” the domain size to make L_2 norm of q small.

- For every bin $i \in [n]$ create set S_i of $[nq_i]$ new bins.
- Subdivide the probability mass of bin i equally within S_i.

Let S be the new domain and p', q' the resulting distributions over S.

![Diagram showing the transformation from $[n]$ to S]
Warm-up: Testing Identity to Fixed Distribution (II)

Let p be unknown distribution and q known distribution on $[n]$.

L1 Identity Tester
- Given q, construct new domain S.
- Use basic tester to distinguish between $p' = q'$ and $\|p' - q'\|_1 \geq \epsilon$.

We construct q' explicitly. Can sample from p' given sample from p.

Analysis:

Observation 1: $\|p' - q'\|_1 = \|p - q\|_1$

Observation 2: $|S| \leq 2n$ and $\|q'\|_2 = O(1/\sqrt{n})$

By Lemma 1, we can test identity between p' and q' with sample size

$$O(\|q'\|_2 |S| / \epsilon^2) = O(\sqrt{n} / \epsilon^2)$$
Testing Closeness (I)

Let p, q be unknown distributions on $[n]$.

Main Idea: Use samples from q to “stretch” the domain size.

- Draw a set S of $\text{Poi}(k)$ samples from q.
- Let a_i be the number of times we see $i \in [n]$ in S.
- Subdivide the mass of bin i equally within $a_i + 1$ new bins.

Let S' be the new domain and p', q' the resulting distributions over S'.

We can sample from p', q'.

Observation: $\|p' - q'\|_1 = \|p - q\|_1$
Testing Closeness (II)

Let \(p, q \) be unknown distributions on \([n]\).

L1 Closeness Tester
- Draw a set \(S \) of \(\text{Poi}(k) \) samples from \(q \), construct new domain \(S' \).
- Use basic tester to distinguish between \(p' = q' \) and \(\|p' - q'\|_1 \geq \epsilon \).

Claim: Whp \(|S'| \leq n + O(k) \) and \(\|q'\|_2 = O(1/\sqrt{k}) \).

Proof:

\[
\|p'\|_2^2 = \sum_{i=1}^{n} \frac{p_i^2}{1 + a_i}, \quad \mathbb{E}[1/(1 + a_i)] \leq 1/(kp_i).
\]

By Lemma 1, we can test identity between \(p' \) and \(q' \) with sample size

\[
O(\|q'\|_2 |S'|/\epsilon^2) = O(k^{-1/2} \cdot (n + k)/\epsilon^2).
\]

Total sample size

\[
O(k + k^{-1/2} \cdot (n + k)/\epsilon^2).
\]

Set \(k := \min\{n, n^{2/3} \epsilon^{-4/3}\} \).
Closeness with Unequal Samples

Let p, q be unknown distributions on $[n]$. Have $m_1 + m_2$ samples from q and m_2 samples from p.

L1 Closeness Tester Unequal
- Set $k := \min\{n, m_1\}$.
- Draw $\text{Poi}(k)$ samples from q, construct new domain S'.
- Use basic tester to distinguish between $p' = q'$ and $\|p' - q'\|_1 \geq \epsilon$.

Claim: Whp $|S'| \leq n + O(k)$ and $\|q'\|_2 = O(1/\sqrt{k})$.

By Lemma 1, we can test identity between p' and q' with sample size

$$m_2 = O(\|q'\|_2 |S'| / \epsilon^2) = O(k^{-1/2} \cdot (n + k) / \epsilon^2).$$

By our choice of k, it follows

$$m_2 = O(\max\{nm_1^{-1/2} \epsilon^2, n^{1/2} / \epsilon^2\}).$$
Testing Independence in 2-d

Let p be unknown distribution on $[n] \times [m]$. Let $q = p_1 \times p_2$.

L1 Independence Tester

- Set $k := \min\{n, n^{2/3} m^{1/3} \epsilon^{-4/3}\}$.
- Draw a set S_1 of $\text{Poi}(k)$ samples from p_1, and S_2 of $\text{Poi}(m)$ samples from p_2.
- Stretch domain in each dimension to obtain new support.
- Use basic tester to distinguish between $p' = q'$ and $\|p' - q'\|_1 \geq \epsilon$.

By Lemma 1, we can test identity between p' and q' with sample size

$$
O(\|q'\|_2 |S'| / \epsilon^2) = O(k^{-1/2} m^{-1/2} \cdot mn / \epsilon^2) \\
= O(\max\{n^{2/3} m^{1/3} \epsilon^{-4/3}, (mn)^{1/2} / \epsilon^2\})
$$
Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness and Independence
- Future Directions and Concluding Remarks
Future Directions

This Work: Unified Technique for Testing *Unstructured* Distributions.

Recent line of work on Testing *Structured* Distributions
(D-Kane-Nikishkin, SODA’15/FOCS’15)

A Few Future Challenges:
• Beyond Worst-Case Analysis
• Other criteria (privacy, communication, etc.)
• Higher Dimensions
• Tradeoffs between sample size and computational efficiency

Thank you for your attention!