Streaming space complexity of nearly all functions of one variable

Vladimir Braverman, Stephen Chestnut, David P. Woodruff, Lin F. Yang

January 7, 2016
A stream of $m = 7$ items from $[n] = [4]$

4, 2, 3, 2, 4, 2, 2

$$f = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\sum f_i^2 = 0$$
A stream of $m = 7$ items from $[n] = [4]$

\[4, 2, 3, 2, 4, 2, 2\]

\[f = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}\]

\[\sum f_i^2 = 1\]
A stream of $m = 7$ items from $[n] = [4]$

2, 3, 2, 4, 2, 2

$$f = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\sum f_i^2 = 2$$
A stream of $m = 7$ items from $[n] = [4]$

$\sum f_i^2 = 3, 2, 4, 2, 2$

$f = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
A stream of $m = 7$ items from $[n] = [4]$

$$f = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\sum f_i^2 = 6$$

2, 4, 2, 2
A stream of $m = 7$ items from $[n] = [4]$

$f = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix}$

$\sum f_i^2 = 9$
A stream of $m = 7$ items from $[n] = [4]$

$$f = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}$$

$$\sum f_i^2 = 14$$
A stream of $m = 7$ items from $[n] = [4]$

$$f = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 2 \end{bmatrix}$$

$$\sum f_i^2 = 21$$
A stream of $m = 7$ items from $[n] = [4]$

$$f = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 2 \end{bmatrix}$$

$$\sum f_i^2 = 21$$

How much storage for a streaming $(1 \pm \epsilon)$-approximation to $\sum_i f_i^2$?
Classify $g : \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}$

Is there a streaming $(1 \pm \epsilon)$-approximation for $\sum_i g(f_i)$ using only $\text{poly}(\frac{1}{\epsilon} \log nm)$ bits?

Previous works

- $g(x) = 1(x \neq 0)$: [FM85],[KNW10]
- $g(x) = x^p$: [F85],[AMS96],[IW05],[I06]
- $g(x) = x \log x$: [CDM06],[CCM07],[HNO08]
- monotonic g: [BO10],[BC15]

$$\epsilon = \Omega\left(\frac{1}{\text{polylog}(n)}\right)$$

$$m = \text{poly}(n)$$

$g(0) = 0$

$g(x) > 0, \forall x > 0$
An α-heavy hitter is any item i^* such that $g(f_{i^*}) \geq \alpha \sum_i g(f_i)$.

Theorem (Braverman & Ostrovsky 2010)

$$\frac{\epsilon^2}{\log^3 n} \text{-heavy hitters} \Rightarrow (1 \pm \epsilon)\text{-approximation to } \sum_i g(f_i).$$
An α-heavy hitter is any item i^* such that $g(f_i^*) \geq \alpha \sum_i g(f_i)$.

Theorem (Braverman & Ostrovsky 2010)

$$\frac{\epsilon^2}{\log^3 n}$$-heavy hitters \Rightarrow $(1 \pm \epsilon)$-approximation to $\sum_i g(f_i)$.

Heavy hitters by CountSketch [Charikar, Chen & Farach-Colton 2002]

- Find i^* such that $f_{i^*}^2 \geq \alpha \sum_i f_i^2$
- Estimate f_{i^*}
- $O(\alpha^{-1} \log^2 n)$ bits.
Three properties are **sufficient** and **almost necessary** for $\tilde{O}(1)$ bits.
Slow-jumping

\[\frac{g(y)}{g(x)} \lesssim \left(\frac{y}{x} \right)^2 \]

YES: \(g(x) = x^2 \log x \)
NO: \(g(x) = x^3 \)
Slow-dropping

YES: \(g(x) = \Theta\left(\frac{1}{\log x}\right) \)

NO: \(g(x) = \Theta\left(\frac{1}{x}\right) \)
Predictable

\[g(y) = (1 \pm \epsilon)g(x) \quad \text{or} \quad g(y - x) \gtrsim g(x) \]

YES: \(g(x) = (2 + \sin x)1(x > 0) \) \quad **NO:** \(g(x) = (2 + \sin x)x^2 \)
Predictable

\[g(y - x) \]

\[g(y) = (1 \pm \epsilon)g(x) \quad \text{or} \quad g(y - x) \gtrless g(x) \]

YES: \[g(x) = (2 + \sin x)1(x > 0) \]

NO: \[g(x) = (2 + \sin x)x^2 \]
Three properties are \textbf{sufficient} and \textbf{almost necessary} for $\tilde{O}(1)$ bits

\textbf{slow-jumping} \quad \frac{g(y)}{g(x)} \lesssim \left(\frac{y}{x}\right)^2,

\textbf{slow-dropping} \quad g(y) \gtrsim g(x), \text{ and}

\textbf{predictable} \quad \text{whenever } 0 < y - x \ll x

\quad g(y) = (1 \pm \epsilon)g(x) \text{ or } g(y - x) \gtrsim g(x).

<table>
<thead>
<tr>
<th>$g(x)$</th>
<th>lower bound</th>
<th>fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^3</td>
<td>$\Omega(n^{1/3})$</td>
<td>slow-jumping</td>
</tr>
<tr>
<td>$1/x$</td>
<td>$\Omega(n)$</td>
<td>slow-dropping</td>
</tr>
<tr>
<td>$g(x) = (2 + \sin x)x^2$</td>
<td>$\Omega(n)$</td>
<td>predictability</td>
</tr>
</tbody>
</table>
Almost necessary?

\[i(x) = \max\{j \in \mathbb{N} : 2^j \text{ divides } x\} \]