JouNs Hopkins A Study of Imitation Learning Methods uman language technology
for Semantic Role Labeling

Travis Wolfe, Mark Dredze, Benjamin Van Durme

center of excellence

UNIVERSITY

Problem Violation Fixing Perceptron Locally Optimal Learning to Search
Task: Semantic Role Labeling (SRL): label the “who”, Early update (Collins and Roark 2004) Chang et al. (2015)

“what”, “when”, “where”, “why” w.r.t. a predicate Max-violation and Latest update (Huang et al. 2012) Reduction to cost-sensitive classification over actions.
Frame Semantic Parsing: predicate disambig. + SRL Assumes prefix separability, else suffix training data Action costs determined by roll-outs, O(1) in this case
Goal: Train models which work well with may be skipped. due to optimal oracle (this work).

greedy inference and global features Update is a sum over states along predicted trajectory.

Local and Global Features .

Local features from Hermann et al. (2014)
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Refine these features with frame, role, or frame+role
of current action (tune granularity on dev). Experiment:

Global = Local
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variations: roll-in and cost function.

Make problem easier,
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Figure 4: Model performance (y) by log number of non-zero global features (x). Propbank (left) and
FrameNet (right). Global feature type by color: numArgs, roleCooc, argloc, arglLocRoleCooc, and
easyfirst is triangle, freq is square, rand is circle. Filled in means dynamic, hollow is static.



