Problem
Given a question \(q \), rank the candidate sentences in a corpus w.r.t. a scoring function \(s(q, p) \) that measures how likely \(p \) answers \(q \).

Discriminative IR

\[
\text{argmax}_{p \in P} s(q, p)
\]

We want \(s \) to be

- Trainable by question/answer pairs
- Decomposable into inner products of sparse vectors \(g(q) \cdot f(p) \)

Under these conditions IR algorithms can be reused! Given \(q \), we compute the feature vector that is expected from answers: \(t_\theta(f_Q(q)) \).

Given feature functions \(f_Q / f_P / f_{QP} \):

\[
f_{QP}(q, p) = f_Q(q) \otimes f_P(p)
\]

Motivation

Vanilla IR – efficient, results not good

Neural reranking – good results, slow (linear)

Is there a better way to triage the set?

Feature set

\[
\begin{align*}
&\{(\text{QWord} \otimes \text{LexAnsType}) \otimes \text{NamedEntityTypes}\} + \\
&\{(\text{QWord} \otimes \text{LexAnsType}) \otimes \text{BagOfWords}\} + \\
&(\text{NamedEntities} \otimes \text{NamedEntities}) + \\
&(\text{NormalizedTfIdf} \otimes \text{BagOfWords})
\end{align*}
\]

Experiments

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of questions</th>
<th># of sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC/AQUAINT</td>
<td>2150</td>
<td>23,398,842</td>
</tr>
<tr>
<td>WikiQA/Wikipedia</td>
<td>2118</td>
<td>20,368,761</td>
</tr>
</tbody>
</table>

Evaluation

<table>
<thead>
<tr>
<th>System</th>
<th>R@1k train</th>
<th>MAP train</th>
<th>MRR train</th>
<th>R@1k dev</th>
<th>MAP dev</th>
<th>MRR dev</th>
<th>R@1k test</th>
<th>MAP test</th>
<th>MRR test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucene</td>
<td>35.47%</td>
<td>38.22%</td>
<td>9.78%</td>
<td>35.47%</td>
<td>38.22%</td>
<td>9.78%</td>
<td>35.47%</td>
<td>38.22%</td>
<td>9.78%</td>
</tr>
<tr>
<td>Yao et al. (2013)</td>
<td>25.88%</td>
<td>45.41%</td>
<td>13.75%</td>
<td>25.88%</td>
<td>45.41%</td>
<td>13.75%</td>
<td>25.88%</td>
<td>45.41%</td>
<td>13.75%</td>
</tr>
<tr>
<td>DiscIR</td>
<td>78.20%</td>
<td>75.15%</td>
<td>17.84%</td>
<td>78.20%</td>
<td>75.15%</td>
<td>17.84%</td>
<td>78.20%</td>
<td>75.15%</td>
<td>17.84%</td>
</tr>
<tr>
<td>WikiQA</td>
<td>24.73%</td>
<td>25.69%</td>
<td>0.58%</td>
<td>24.73%</td>
<td>25.69%</td>
<td>0.58%</td>
<td>24.73%</td>
<td>25.69%</td>
<td>0.58%</td>
</tr>
<tr>
<td>DiscIR</td>
<td>58.79%</td>
<td>60.88%</td>
<td>10.26%</td>
<td>58.79%</td>
<td>60.88%</td>
<td>10.26%</td>
<td>58.79%</td>
<td>60.88%</td>
<td>10.26%</td>
</tr>
</tbody>
</table>

Results

* Feature vectors are represented as a set of (key = value, weight) tuples.
* For all \((h_i = v_i, w_i) \in f, (h_i = v_i, w_i) \in g\)