Problem Definition

Anchored Speech Recognition
- To distinguish target speaker from interfering speakers and background speech/noises and only recognize speech from the target speaker.
- Interfering speech: A challenging problem in far-field Automatic Speech Recognition (ASR) which causes
 - Undesired insertion and misrecognition errors
 - End-pointing delay

Previous Work
- **Feature based Anchored Speech Recognition**
 - Feed in speech recognition system with additional speaker representation features extracted from anchored words
 - Speaker Representations
 - mean-variance normalization, maximum likelihood linear regression (MLLR), i-vector, D-vector, X-vector, anchored mean subtraction (AMS), encoder-decoder network, etc.
 - Pros: Easy to implement, decent performance
 - Cons: Does not really distinguish speaker differences between target and interfering speech due to limited information capacity of the conventional ASR model architecture

End-to-End Anchored Speech Recognition

Attention-based Encoder-Decoder Model
- Attention mechanism enables ASR systems to focus on recognizing only speech from target speakers
 - **Multi-Source Attention**
 - **Mask-based Attention**

Interfering Speech Training Data Synthesis
- **Two types of synthetic methods**
 - **Method 1**
 - Interfering segment insertion
 - \(<w> \) ‘what’s the weather’
 - \(<w> \) ‘play a song from frozen
 - **Method 2**
 - Complete interfering
 - \(<w> \) ‘what’s the weather’
 - \(<w> \) ‘play a song from frozen

Multi-task Training for Mask-based Attention Model
- For synthesized training data, we have ground truth for the mask of target speech – which can be used to train mask-based attention model in a supervised manner.
- Combine the normal ASR CE loss with Mask CE loss with interpolation weight \((1 - \lambda) \) \(L_{CE} \) + \(\lambda \) \(L_{MCE} \).

Experimental Setup

- **Dataset**
 - Training: 1200-hour manual transcribed English Amazon Echo live data with same wake word. Mostly clean condition utterances
 - Test datasets
 - **Normal set** (25k words) – similar to training data condition (clean)
 - **Hard set** (5k words) – live data containing interfering speech
 - **E2E ASR systems**
 - Input: 64-dim LFBE feature; Output: Graphemes for beam search (beam size = 15) with vocabulary
 - **Baseline**
 - Enc: 3 Conv Layers (with down samplings) + 3 BLSTM Layers; Dec: 3 uni-LSTM (320-dim) layers
 - **Multi-Source Attention – S-Enc**: 3-Conv layers (same as Enc)
 - **Mask-based Attention – S-Enc**: 3-Conv layers + 1 BLSTM layer

<table>
<thead>
<tr>
<th>Model</th>
<th>Training Set</th>
<th>Test Set</th>
<th>WER</th>
<th>sub</th>
<th>del</th>
<th>WERR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>normal 1.000</td>
<td>0.715</td>
<td>0.108</td>
<td>0.177</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Device-directed-only</td>
<td>hard 3.534</td>
<td>1.762</td>
<td>1.123</td>
<td>0.469</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Augmented</td>
<td>normal 3.215</td>
<td>1.223</td>
<td>0.038</td>
<td>1.954</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Device-directed-only</td>
<td>hard 4.208</td>
<td>1.777</td>
<td>0.246</td>
<td>2.185</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Augmented</td>
<td>normal 1.015</td>
<td>0.731</td>
<td>0.115</td>
<td>0.169</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Device-directed-only</td>
<td>hard 3.262</td>
<td>1.746</td>
<td>1.062</td>
<td>0.454</td>
<td>+2.8</td>
<td></td>
</tr>
<tr>
<td>Augmented</td>
<td>normal 1.015</td>
<td>0.700</td>
<td>0.108</td>
<td>0.207</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Device-directed-only</td>
<td>hard 2.854</td>
<td>1.569</td>
<td>0.723</td>
<td>0.562</td>
<td>+14.9</td>
<td></td>
</tr>
</tbody>
</table>

| Table 3. Mask-based Model: with and without mask supervision. |
|--------------------------|--------------------------|--------------------------|--------------------------|
| **Model** | Training Set | Test Set | WER | sub | del | WERR (%) |
| **w/o** Supervision | normal 1.348 | 0.725 | 0.096 | 0.527 | — |
| **w/** Supervision | hard 3.232 | 1.508 | 0.628 | 1.087 | +3.9 |
| **w/o** Supervision | normal 1.030 | 0.715 | 0.115 | 0.200 | — |
| **w/** Supervision | hard 2.931 | 1.586 | 0.809 | 0.536 | +12.6 |

Conclusion

- Two approaches for E2E anchored speech recognition are proposed: **Multi-source Attention** and **Mask-based Attention**
- Two ways of interfering speech training data synthesis are proposed addressing training data sparsity issue in anchored speech recognition task – provides ~12% relative improvement (+2.8% to +14.9%)
- A multi-task training scheme for Mask based model is also proposed: ~15% WER reduction on test data with interfering background speech; while with only a minor degradation of 1.5% on clean speech.