Towards Typesafe Deep Learning in Scala

Tongfei Chen
Johns Hopkins University
Deep learning in a nutshell

- Hype around AI
- Core data structure: Tensors
 - A.k.a. Multidimensional arrays (NdArray)

![Diagram showing word embedding](image)
Deep learning in a nutshell

Deep learning in a nutshell

• Function fitting!
 • Linear regression:
 \(f : \mathbb{R}^m \to \mathbb{R}^n; \hat{y} = Ax + b \)
 • Machine translation:
 \(f : Fr \to En \)

• Model (function to fit):
 • is composed from smaller building blocks with parameters;
 • trained by gradient descent with respect to a loss function.
 \[L = \| \hat{y} - y \|^2 \]

• Deep Learning est mort. Vive Differentiable Programming! (LeCun, 2018)
Common deep learning libraries

- TensorFlow
- PyTorch
- mxnet
- dy/net
- Caffe2
- Chainer
The Pythonic way (TensorFlow)

\[x = \text{tf.placeholder}(\text{tf.float32}, [m]) \]
\[y = \text{tf.placeholder}(\text{tf.float32}, [n]) \]
\[A = \text{tf.Variable}(\text{tf.random_normal}([n, m])) \]
\[b = \text{tf.Variable}(\text{tf.random_normal}([n])) \]
\[Ax = \text{tf.multiply}(x, A) \]
\[\text{pred} = \text{tf.add}(Ax, b) \]
\[\text{cost} = \text{tf.reduce_sum}(\text{tf.pow}(\text{pred} - y, 2)) \]
A more complex example (PyTorch)

def forward(self, x: Variable) → Variable:

 :param x: LongTensor[Batch, Word]
 :return: FloatTensor[Batch, Word, Embedding]

 x_embedded = self.EmbeddingLayer(x).transpose(0, 1)
 | # FloatTensor[Word, Batch, Emb]

 batch_size = x.size(0)
 h0_batched = self.h0.unsqueeze(1).expand(self.h0.size(0), batch_size, self.h0.size(1)).contiguous()
 | # [Layer*Direction, Batch, Emb]
 c0_batched = self.c0.unsqueeze(1).expand(self.c0.size(0), batch_size, self.c0.size(1)).contiguous()
 | # [Layer*Direction, Batch, Emb]

 output, _ = self.RecurrentLayer(x_embedded, (h0_batched, c0_batched))
 | # [Word, Batch, Emb]

 return output.transpose(0, 1)
 | # [Batch, Word, Emb]
The Pythonic approach

• Everything belongs to one type: Tensor
 • Vectors / Matrices
 • Sequence of vectors / Sequence of matrices
 • Images / Videos / Words / Sentences / …

• How many axes are in there? What does each axis stand for?

• Programmers track the axes and shape by themselves
 • Pythonistas can remember them by heart!
 • However, as a static typist, I cannot remember all these – I need types to guide me
nescala 2018

GIVE ME TYPE SAFETY OR GIVE ME DEATH
NEXUS: **TYPESAFE** DEEP LEARNING

https://github.com/ctongfei/nexus
Typesafe tensors: goal

Tensor [Axes]

- “Axes” is the tensor axes descriptor – describes the semantics of each axis
 - A tuple of singleton types (labels to axes)

- All operations on tensors are statically typed
 - Result types known at compile time – IDE can help programmers
 - Compilation failure when operating incompatible tensors
Typesafe tensors

- FloatTensor[(Width, Height, Channel)]
- FloatTensor[(Word, Embedding)]
Typesafety guarantees

- Operations on tensors only allowed if their operand’s axes make sense mathematically.

- ✔️ Tensor[A] + Tensor[A]
- ✗️ Tensor[A] + Tensor[(A, B)]
- ✗️ Tensor[A] + Tensor[B]
Typesafety guarantees

• Matrix multiplication

- ❌ MatMul(Tensor[A], Tensor[A])
- ❌ MatMul(Tensor[(A, B)], Tensor[(A, B)])
- ✅ MatMul(Tensor[(A, B)], Tensor[(B, C)])
Typesafety guarantees

- Axis reduction operations

\[Y_{ik} = \sum_j X_{ijk} \]

- Python (TensorFlow): tf.reduce_sum(X, dim=1)

- X: Tensor[(A, B, C)]
 -✅ SumAlong(B)(X): Tensor[(A, C)]
 -❎ SumAlong(D)(X)
Tuples \Leftrightarrow HLists

- HLists are easier to manipulate
 - Underlying typelevel manipulation is done using HLists
- Use Generic and Tupler in Shapeless

- Generic.Aux[A, B] proves that the HList form of A is B
- Tupler.Aux[B, A] proves that the tuple form of B is A
Typesafe computation graphs: GADTs

• sealed trait Expr[X]
• case class Input[X] extends Expr[X]
• case class Param[X](var value: X) (implicit val tag: Grad[X]) extends Expr[X]
• case class Const[X](value: X) extends Expr[X]

• case class App1[X, Y](op: Op1[X, Y], x: Expr[X]) extends Expr[Y]
• case class App2[X1, X2, Y](op: Op2[X1, X2, Y], x1: Expr[X1], x2: Expr[X2]) extends Expr[Y]

• ……
Typesafe differentiable operators

```
trait Op1[X, Y] extends Func1[X, Y] {

  def apply(x: Expr[X]): Expr[Y] = App1(this, x)

  def forward(x: X): Y

  def backward(dy: Y, y: Y, x: X): X
}
```

\[
y = f(x_1, x_2)
\]

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
\]
Typesafe differentiable operators

```
trait Op2[X1, X2, Y] extends Func2[X1, X2, Y] {
  def apply(x1: Expr[X1], x2: Expr[X2]) = App2(this, x1, x2)
  def forward(x1: X1, x2: X2): Y
  def backward1(dy: Y, y: Y, x1: X1, x2: X2): X1
  def backward2(dy: Y, y: Y, x1: X1, x2: X2): X2
}
```

\[y = f(x_1, x_2) \]

\[\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x_1} \]

\[\frac{\partial L}{\partial x_2} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x_2} \]
Forward computation

• Type:
 \[\text{Expr}[\text{A}] \Rightarrow \text{A} \]

• With Cats:
 \[\text{Expr} \sim \Rightarrow \text{Id} \]

• Interpreting the computation graph

```java
def apply[A](e: Expr[A]): A = {
  if (values contains e) values(e)
  else e match {
    case Param(x, _) => values(e) = x; x
    case Const(x, _) => values(e) = x; x
    case App1(o, x) =>
      val y = o.forward(apply(x))
      values(e) = y; y
    case App2(o, x1, x2) =>
      val y = o.forward(apply(x1), apply(x2))
      values(e) = y; y
    case App3(o, x1, x2, x3) =>
      val y = o.forward(apply(x1), apply(x2), apply(x3))
      values(e) = y; y
    case e @ Input(_ _) =>
      throw new InputNotGivenException(e) // should already be in `values`
  }
}
```
Backward (gradient) computation

- From last node (loss), traverse the graph
 - Reversed ordering of forward computation

- For each node x, compute the gradient of the loss with respect to x
Operators vs modules

- Operators: Can be directly computed using the forward method
- Modules: Must use an interpreter to interpret (contains computation subgraph)

\[
\text{Func1}[X, Y] = (\text{Expr}[X] \Rightarrow \text{Expr}[Y])
\]

Supertype for all symbolic functions

\[
\begin{align*}
\text{Op1}[X, Y] & \quad \text{forward}(x: X): Y \\
\text{Module1}[X, Y] & \quad \text{backward}(dy: Y, y: Y, x: X): X \\
\end{align*}
\]

parameters: Set[Param[_]]
Polymorphic symbolic functions

- Op[X, Y] only applies on one type: X
- We need type polymorphism. Similar to Shapeless’s Poly1:

```scala
trait PolyFunc1 {

  type F[X, Y]

  def ground[X, Y](implicit f: F[X, Y]): Func1[X, Y]

  def apply[X, Y](x: Expr[X])(implicit f: F[X, Y]): Expr[Y] =
    ground(f)(x)
}
```

```scala
Case.Aux[X, Y]
```
Polymorphic symbolic functions

```scala
def apply[X, Y](x: Expr[X])(implicit f: F[X, Y]): Expr[Y]
```

- Only applicable when `op.F[X, Y]` found. If found, result type is `Expr[Y].`
- `F[_, _]` is an arbitrary typelevel predicate!
- `op.F[X, Y] ⇔ op` can be applied to `Expr[X]`, and it results in `Expr[Y].`

- Compiling as proving (Curry-Howard correspondence!)
- Implicit `F[X, Y]` found ⇔ Proposition `F[X, Y]` proven
- We can encode any type constraint we want on type operators into `F`.
Polymorphic operators

abstract class Poly0p1 extends PolyFunc1 {

@implicitNotFound("This operator cannot be applied to an argument of type $\{X\}.")

trait F[X, Y] extends Op1[X, Y]

def ground[X, Y](implicit f: F[X, Y]) = f

override def apply[X, Y](x: Expr[X])(implicit f: F[X, Y]) = f(x)
}

For polymorphic operators, the proof F is the grounded operator itself.
Example: Add

- Two variables of the same type, and can be differentiated against can be added.

\[\forall X, \text{Grad}[X] \rightarrow \text{Add}.F[X, X, X] \]

```scala
object Add extends PolyOp2 {

  implicit def addF[X: Grad]: F[X, X, X] = new F[X, X, X] {
    def name = "Add"
    def tag(tx1: Type[X], tx2: Type[X]) = tx1
    def forward(x1: X, x2: X): X = x1 + x2
    def backward1(dy: X, y: X, x1: X, x2: X): X = dy
    def backward2(dy: X, y: X, x1: X, x2: X): X = dy
  }
}
```
Example: MatMul

- Two matrices can be multiplied when the second axis of the first matrix coincides with the first axis of the second matrix.

\[\forall T, R, A, B, C, \text{IsRealTensorK}[T, R] \rightarrow \text{MatMul.F}[T[A, B], T[B, C], T[A, C]] \]

```scala
object MatMul extends PolyOp2 {

  implicit def matMulF[T[_], R, A, B, C] = {
    (implicit T: IsRealTensorK[T, R]): F[T[(A, B)], T[(B, C)], T[(A, C)]] = {
      new F[T[(A, B)], T[(B, C)], T[(A, C)]] {
        import T._
        def name = "MatMul"
        def tag(tx1: Type[T[(A, B)]], tx2: Type[T[(B, C)]])) = T.ground[(A, C)]
        def forward(x1: T[(A, B)], x2: T[(B, C)]) = mmMul(x1, x2)
        def backward1(dy: T[(A, C)], y: T[(A, C)], x1: T[(A, B)], x2: T[(B, C)]) = mmMul(dy, transpose(x2))
        def backward2(dy: T[(A, C)], y: T[(A, C)], x1: T[(A, B)], x2: T[(B, C)]) = mmMul(transpose(x1), dy)
      }
    }
  }
```
Parameterized polymorphic operators

- Sometimes operators depend on parameters not part of the computation graph

```scala
abstract class ParameterizedPolyOp1 { self =>

trait F[X, Y] extends Op1[X, Y]

class Proxy[P](val parameter: P) extends PolyFunc1 {
  type F[X, Y] = P => self.F[X, Y]
  def ground[X, Y](implicit f: F[X, Y]) = f(parameter)
}

def apply[P](parameter: P): Proxy[P] = new Proxy(parameter)
}
```
Example: Axis renaming

\[
\forall T,E,A,U,V,B, \begin{cases}
\text{IsTensorK}[T,E] \\
A \setminus \{U\} \cup \{V\} = B
\end{cases} \rightarrow \text{Rename.F}[T[A],T[B]]
\]

```scala
object Rename extends ParameterizedPolyOp1 {

  new F[T[A], T[B]] {
    val (u, v) = uv
    import T._
    def name = s"Rename[${typeName(u)} → ${typeName(v)}]"
    def tag(tx: Type[T[A]]) = T.ground[B]
    def forward(x: T[A]) = typeWith[B](untype(x))
    def backward(dy: T[B], y: T[B], x: T[A]) = typeWith[A](untype(dy))
  }
}
```
Example: Sum along axis

- `IndexOf.Aux[A, U, N]`: The N-th type of A is U
- `RemoveAt.Aux[A, N, B]`: A, with the N-th type removed, is B

\[
Y_{ik} = \sum_j X_{ijk}
\]

\[
\forall T, R, A, U, B, \begin{cases}
\text{IsRealTensorK}[T, R] \\
A \setminus \{U\} = B
\end{cases} \rightarrow \text{SumAlong.F}[T[A], T[B]]
\]

```scala
object SumAlong extends ParameterizedPolyOp1 {

  new F[T[A], T[B]] {
    def name = s"SumAlong[${typeName(u)}]"
    def tag(tx: Type[T[A]]) = T.ground[B]
    def forward(x: T[A]) = T.sumAlong(x, ix.toInt)
    def backward(dy: T[B], y: T[B], x: T[A]) = T.expandDim(dy, ix.toInt, T.size(x, ix.toInt))
  }
}
IndexOf in the style of Shapeless

```scala
implicit def indexOfHListCase0[T <: HList, X]: Aux[X :: T, X, _0] =
 new IndexOf[X :: T, X] {
 type Out = _0
 def apply() = Nat._0
 def toInt = 0
 }
```

```scala
```

```scala
implicit def indexOfHListCaseN[T <: HList, H, X, I <: Nat]
 (implicit p: IndexOf.Aux[T, X, I]): Aux[H :: T, X, Succ[I]] =
 new IndexOf[H :: T, X] {
 type Out = Succ[I]
 def apply() = Succ[I]()
 def toInt = p.toInt + 1
 }
```
Native C / CUDA integration

- Doing math in JVM is not efficient
- Integration with native code through JNI
- Underlying C/C++ code; JNI code generated by SWIG

- Native CPU backend: BLAS/LAPACK from MKL/OpenBLAS/etc.
- CUDA GPU backend: cuBLAS/cuDNN
- OpenCL GPU backend?
Example approach (PyTorch)

- Bridging Python with native CPU / CUDA code
Supporting multiple backends

- Bridging JVM with native CPU / CUDA code through SWIG-generated JNI code
- Reusing C/C++ backends from existing libraries (PyTorch / etc.)

<table>
<thead>
<tr>
<th>Backend 1: CPU</th>
<th>Backend 2: CUDA</th>
<th>OpenCL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>* .so / * .dylib / * .dll</td>
<td>* .so / * .dylib / * .dll</td>
<td></td>
</tr>
<tr>
<td>Torch NN (THNN)</td>
<td>Torch CUDA NN (THCUNN)</td>
<td></td>
</tr>
<tr>
<td>Torch (TH)</td>
<td>Torch CUDA (THC)</td>
<td>cuDNN</td>
</tr>
<tr>
<td>BLAS / LAPACK (MKL / OpenBLAS / etc.)</td>
<td>CUDA cuBLAS</td>
<td></td>
</tr>
</tbody>
</table>
Neural networks with dynamic structures

- Common in natural language processing
- Variable sentence length

![Diagram of neural network with dynamic structures]
Neural networks with dynamic structures

- Distinct syntactic structures
Example: Neural machine translation (Seq2Seq)

Das Haus ist klein

ScanLeft

ScanRight

ZipWith(Concat)

Unfold

das Haus ist klein

the house is small

EOS
Static vs dynamic computation graphs

- Static: Construct graph once, interpret later
  - Difficult to implement dynamic neural networks
- Dynamic: Compute as you construct the graph
  - Lost the ability to do runtime optimization

Lazily create graph for each batch, then do runtime optimization, then run
User control of evaluation

sealed trait Expr[X] {
  /**
   * Gets the value of this expression given an implicit computation instance, while forcing this expression to be evaluated strictly in that specific computation instance.
   */
  def value(implicit comp: Expr ~> Id): X = comp(this)
}

Normally the computation graph is constructed lazily. Once value is called, the interpreter is forced to compute to graph to this node.
User control of evaluation

\[
\hat{y} = x \mid \rightarrow \text{Layer1} \mid \rightarrow \text{Sigmoid} \mid \rightarrow \text{Layer2} \mid \rightarrow \text{Softmax}
\]

\[
\text{val loss = (y, } \hat{y} \text{)} \mid \rightarrow \text{CrossEntropy}
\]

given (x := xValue, y := yValue) { implicit computation =>

\[
\text{val lossValue = loss.value}
\]

\[
\text{averageLoss += lossValue}
\]

……

}
Future work

• Towards a fully-fledged Scala deep learning engine
  • Automatic batching (fusion of computation graphs)
  • Complete GPU support
  • Garbage collection (off-heap memory & GPU memory)
  • Distributed learning (through Spark?)

• Help needed!
Q&A