A Pruned RNNLM Lattice-Rescoring Algorithm for Automatic Speech Recognition

Hainan Xu1,2, Tongfei Chen1, Dongji Gao1, Yiming Wang1, Ke Li1, Nagendra Goel3, Yishay Carmiel2, Daniel Povey1, Sanjeev Khudanpur1

1Center for Language and Speech Processing, Johns Hopkins University; 2IntelligentWire, Seattle WA; 3Go-Vivace Inc., USA

Overview

- Usually lattice-rescoring uses \textit{n}-gram approximation to limit search space;
- We propose a heuristics that finds more promising arcs to expand, and use it for pruning;
- Complexity of the algorithm grows approximately (empirically) linear with \textit{n}-gram order, compared with exponential growth of the baseline algorithm;
- \textit{n}X and \textit{10}X faster for 4-gram and 5-gram;
- The heuristics also consistently improves WER;
- The evaluation is done with TensorFlow to Kaldi.

Lattice Rescoring

- In speech recognition, decoding is usually done on a static decoding graph compiled from an \textit{n}-gram;
- RNNLM rescoring helps further reduce WERs by (partially) replacing LMs weights on a decoded lattice;
- A naive implementation to rescore the lattice is lattice;
- \textit{n}-gram approximation algorithm is commonly used in order to limit the search space.

Pruned Algorithm

- For each arc to be expanded, we compute a score reflecting how likely this arc will become part of the best-path;
- Arcs that are not very promising (out of the beam) are not expanded;
- Arcs that are more promising get expanded first, so that output lattice states encode “better” history.

Heuristic

- The heuristic is computed as
 \[H(c) = \alpha(c) + \beta(a) + \delta(c) \]
 \(\alpha(c) \) is the forward-cost for \(c \) in the output lattice;
 \(\beta(a) \) is the backward-cost for \(a \) in the input lattice;
 \(\delta(c) \) is an “expectation” of \(\beta(c) - \beta(a) \)

\begin{equation}
\delta(c) = \frac{\beta(c) - \beta(a)}{\beta(\text{prev}(c))} = \begin{cases}
\frac{\beta(c) - \beta(a)}{\beta(\text{prev}(c))} & \text{if } \beta(\text{prev}(c)) < +\infty \\
+\infty & \text{if } \beta(\text{prev}(c)) = +\infty
\end{cases}
\end{equation}

- \(\text{prev}(c) \) is the previous state of \(c \) on the best path from start to \(c \).

Word-error-rate

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Test set</th>
<th>ARPA baseline</th>
<th>RNNLM rescoring with \textit{n}-gram approximation</th>
<th>2-gram</th>
<th>3-gram</th>
<th>4-gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI-HM</td>
<td>dev</td>
<td>24.2</td>
<td>24.1</td>
<td>24.0</td>
<td>23.7</td>
<td>23.4</td>
</tr>
<tr>
<td>(0.5)</td>
<td>eval</td>
<td>25.4</td>
<td>25.8</td>
<td>25.0</td>
<td>24.6</td>
<td>24.4</td>
</tr>
<tr>
<td>SWBD</td>
<td>swbd</td>
<td>8.1</td>
<td>8.6</td>
<td>8.2</td>
<td>7.4</td>
<td>7.2</td>
</tr>
<tr>
<td>(0.8)</td>
<td>eval2000</td>
<td>12.4</td>
<td>12.9</td>
<td>12.3</td>
<td>11.7</td>
<td>11.5</td>
</tr>
<tr>
<td>WSJ</td>
<td>dev93</td>
<td>7.6</td>
<td>7.2</td>
<td>6.9</td>
<td>6.4</td>
<td>6.2</td>
</tr>
<tr>
<td>(0.8)</td>
<td>eval92</td>
<td>5.1</td>
<td>4.6</td>
<td>4.2</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>LIB</td>
<td>test-clean</td>
<td>6.0</td>
<td>5.5</td>
<td>5.1</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>(0.5)</td>
<td>dev-clean</td>
<td>5.7</td>
<td>5.0</td>
<td>4.8</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>dev-other</td>
<td>14.5</td>
<td>13.7</td>
<td>12.9</td>
<td>12.0</td>
<td>11.9</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Table 1: WER of Lattice-rescoring of Different RNNLMs

Contact Information

- Web: http://www.hainanxv.com
- Email: hxxi31@jhu.edu

Acknowledgements

This work was partially supported by DARPA LORELEI award number HR0011-15-2-0024. NSF Grant No CRI-1513128 and IARPA MATERIAL award number FA8650-17-C-9115 and by IntelligentWire. The authors would also like to thank the TensorFlow team at Google for their help during the project.

Analysis of Old Algorithm

(c)(a) (b)

Lattice-rescoring Speed

Output Lattice Size

(arcs per frame)