Pervasive Triage: Towards Ubiquitous, Real-time Monitoring of Vital Signs for Pre-hospital Applications

http://www.aid-n.org

Tammara Massey ², Tia Gao¹, Daniel Bernstein¹, Azmat Husain¹, David Crawford¹, David White¹, Leo Selavo³ and Majid Sarrafzadeh¹

¹ Johns Hopkins University
² University of California, Los Angeles
³ University of Virginia

UbiHealth, September 18, 2006, Irvine, CA
Pervasive Vital Signs Monitoring

Goal: use noninvasive biomedical sensors to seamless collect data from incident to end destination.

- More information on the vital signs and location of the patients to be obtained during initial triage.
- Reduce the workload of the responders.
- Provide a more accurate count of the patients.
AID-N Motivation: Previous Discrete Triage System

What if radical changes in disaster response technologies **revolutionize** the quality of pre-hospital patient care?

- **Paper Triage Tags**
- **Pens & Forms**
- **Charts & White Boards**
- **Wireless Tag with Automated Sensors**
- **Field PDA**
- **Driver’s License Scanner**
- **Web Portals**
AID-N System Overview

Advanced Health and Disaster Aid Network
Usable Triage System: Noninvasive Biomedical Sensors

Hardware and Software in Biomedical Sensors

- **Hardware – small, low power**
 - TelosB
 - MicaZ

- **Software – mesh n/w**
 - TinyOS
 - CodeBlue

- **Auxillary boards**
 - Pulseox board
 - Triage tag board
 - Blood pressure cuff board
 - Ekg board
Seamless Information Transfer

Accident Scene → Triage → Vehicle
→ Hospital / Auxiliary Care Center

- Sensors – backwards compatible with sensors in current emergency medical service vehicles.

- Collected sensor data can allow researchers to better understand what exactly occurs during a mass casualty incident.

- Relieves workload of responder – continuously monitor patients remotely.
Patient Monitoring and Data Collection
Communicates: (802.15.4) to/from patient sensors

<table>
<thead>
<tr>
<th>Alert Category</th>
<th>Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>No pulse</td>
</tr>
<tr>
<td></td>
<td>Bradycardia</td>
</tr>
<tr>
<td></td>
<td>Tachycardia</td>
</tr>
<tr>
<td></td>
<td>Onset of change</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
</tr>
<tr>
<td>Oxygen Saturation</td>
<td>Low oxygen saturation</td>
</tr>
<tr>
<td></td>
<td>Onset of change</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>Systolic pressure</td>
</tr>
<tr>
<td></td>
<td>Diastolic pressure</td>
</tr>
<tr>
<td></td>
<td>Widening pulse pressure</td>
</tr>
<tr>
<td></td>
<td>Narrowing pulse pressure</td>
</tr>
<tr>
<td></td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td></td>
<td>Change</td>
</tr>
</tbody>
</table>
Mass Casualty Drill: Bus Accident

- Bus accident in Maryland.
- Initial assumptions.
 - Patients complaints.
 - Blunt trauma.
 - Pre-existing conditions.
 - Hospitals within 15 mi radius reached surge capacity.
Analyze Realistic Deployment

- 20 patients, 16 responders.
- 1 hospital, 1 auxiliary care center.
- 2 teams with identical structure: 1 commander, 3 officers, 3 medics.
 - Electronic team.
 - Paper team.

Paper Team Patients: green shirts

Electronic Team Patients: yellow shirts
Usable System: Pre-Drill Training

- Electronic team group training.
 - 10 minutes.
 - Medics played with devices.
- Paper team pre-trained by standard EMS procedures.
Disaster Drill Process

- Patients triaged (tagged) and held on scene for 30 minutes.
 - EMS Protocol: Patients *should* be reassessed every 3 - 15 minutes.
- Highest priority patients transported to hospital.
- Remaining patients transported to Auxiliary Care Center.
Disaster Drill Results

• Number of times the patients triaged in electronic system – increased by almost 3 fold.

• The communication among electronic triage team was greater and more information retrieved.

Transport Officer Paper Team

Transport Officer Electronic Team
Revolutionize Healthcare: Challenges

Vision – change how data in healthcare in collected and disseminated.

• Challenges
 • Need location tracking - easily deployable, work indoors & out.
 • Keep focus on patient and not technology.
 • Need sensor to collect the mental state of the patient.
 • Need delay tolerant infrastructure – patient wander out of range, communication goes down.
 • Need security – fast, lightweight, secure.
Demo

Improving Situational Awareness during Emergency Medical Response

• UbiComp--Tuesday, September 19, 2006 5:30-7:30pm
Acknowledgements

Tia Gao, AID-N Project Lead, JHU
Matt Welsh, Harvard Univ.
Dave Crawford, U. of Maryland
Leo Selavo, U of Virginia
Gilmer Blankenship, U of Maryland
Jonathan Gaev, ECRI
Bijan Mashayekhi, NLM
Gordon Aoyati, Mont. Co. DHS

Kathy Hurt-Mullen, Mont. Co. HHS
Harold Lehmann, JH Medicine
Arjun Chanmugam, JH Medicine
Matt Kim, JH Medicine
Bob Rothstein, Suburban Hospital
Cindy Notobartolo, Suburban Hospital
Pat Hawes, Suburban Hospital
Extra Slides
Demo

Improving Situational Awareness during Emergency Medical Response

• UbiComp--Tuesday, September 19, 2006 5:30-7:30pm
Context Aware GUI

GUI aware of location and displays necessary information

- Scene of accident – Displays patient vital info and map
- Transport Vehicles – Displays vital signs and map
- Auxillary Care – Displays patient vital signs and map
- Triage Commander – Displays transportation information on the patients
More Hardware & Software Details

- **Radio**
 - CC2420
 - 2.4 GHz radio
 - 70 – 200 ft range
 - Power ~41 mW

- **RAM** – 4KB / 10 KB

- **ROM** – 128KB, 48KB

- **Programming Lang** – Nesc, Java, C Sharp, ASP.net

- **Pulseox & EKG motes last** ~1-2 days

- **BP Cuff mote last** ~ 5 hrs

- **Cost** = $300 currently, but cheaper if mass produced