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ABSTRACT
A landslide occurs when the balance between a hill’s weight and
the countering resistance forces is tipped in favor of gravity. While
the physics governing the interplay between these competing forces
is fairly well understood, prediction of landslides has been hin-
dered thus far by the lack of field measurements over large tem-
poral and spatial scales necessary to capture the inherent hetero-
geneity in a landslide.

We propose a network of sensor columns deployed at hills with
landslide potential with the purpose of detecting the early signals
preceding a catastrophic event. Detection is performed through
a three-state algorithm: First, sensors collectively detect small
movements consistent with the formation of a slip surface sep-
arating the sliding part of hill from the static one. Once the
sensors agree on the presence of such a surface, they conduct
a distributed voting algorithm to separate the subset of sensors
that moved from the static ones. In the second phase, moved
sensors self-localize through a trilateration mechanism and their
displacements are calculated. Finally, the direction of the dis-
placements as well as the locations of the moved nodes are used
to estimate the position of the slip surface. This information
along with collected soil measurements (e.g. soil pore pressure)
are subsequently passed to a Finite Element Model that predicts
whether and when a landslide will occur.

Our initial results from simulated landslides indicate that we

can achieve high degree of accuracy (in the order of cm) in the

localization step as well as the slip surface estimation step of our

algorithm. This accuracy persists as the density and the size of

the sensor network decreases as well as when considerable noise

is present in the ranging estimates. As for our next step, we

want to evaluate the performance of our system in controlled

environments under a variety of hill configurations.
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1. INTRODUCTION
Landslides are geological phenomena causing significant

loss of life and billions of dollars in damages each year. Al-
though a basic understanding of the causes and behavior of
landslides is available, systems that predict the occurrence
of a landslide at a specific site do not exist.

There are two main reasons for this: First, much of the
knowledge about landslides is qualitative and based on static
measures. However, development of a landslide is a temporal
process, which can take as long as a year to develop. Second,
the phenomenology of landslides is fundamentally spatial in
nature. Though single point-location measurements of soil
properties can be helpful, to reliably infer the potential for
a landslide in a given location, it is important to be able
to characterize soil properties over a suitably-sized region.
Spatially-distributed sensing is essential before it will be pos-

sible to develop effective landslide prediction and warning

systems.

In our proposal, hills that have the potential for land-
slides are outfitted with a network of sensor columns placed
in vertical holes drilled in a semi-regular grid pattern over
the hill’s surface. Each sensor column is equipped with a
range of instruments such as strain gages, tensiometers, geo-
phones, and pore pressure transducers that enable it to mea-
sure changes in its location over time as well as soil char-
acteristics relevant to the landslide phenomenon. Sensor
columns collaborate to detect the initial signs of a landslide
and estimate the location of the slip surface – the surface
separating the sliding part from the rest of the hill.



The proposed collaborative detection algorithm has three
phases: (i) Detection: the formation of a slip surface is
established during this initial phase based on sensor column
deformations. We use a two-tier anomaly detection algo-
rithm to avoid false positives caused by normal hill move-
ments not related to a landslide. First, deformations at a
single column have to be above a threshold to be relevant.
Once a column has detected such a statistically significant
deformation, it initiates the second tier detection algorithm
that involves the collaboration of neighboring nodes. The
insight behind this algorithm is that if a slip surface has
actually formed then neighboring nodes must also experi-
ence consistent deformations. Otherwise the observed phe-
nomenon is localized and no further action is taken. (ii) Lo-
calization: after the existence of a slip surface has been es-
tablished, columns perform a collaborative localization task
to determine the set M of nodes that moved and the new
locations of the displaced nodes. We use a distributed vot-
ing algorithm to determine the nodes which moved. Next,
the nodes in M are localized through trilateration. The
updated node locations are calculated using collected range
estimates between nodes in M and the set of stationary
nodes (Mc). These estimates are collected with the help
of seismic sources and geophones placed at regular inter-
vals on the sensor columns. (iii) Estimation: After the
identities and locations of the moved nodes have been es-
tablished, the location of the slip surface is approximated
based on the direction of movement of the displaced nodes.
Intuitively, the estimation algorithm positions the slip sur-
face on the hypothetical boundary between the sets M and
Mc. Once the existence and approximate location of the
slip surface are determined, nodes in the network start for-
warding measured soil properties to an analysis station. The
analysis station uses these measurements as input to a Fi-
nite Element Model (FEM) that predicts whether and when
a catastrophic landslide will occur.

In this work we evaluate the distributed slip surface lo-
calization algorithm. Specifically, we investigate the impact
of sensor density, sensor location, and ranging noise on pre-
diction accuracy using simulated landslides generated by an
detailed finite element model. Our initial results show that
we can achieve high degree of accuracy (in the order of cm)
in the localization step as well as the slip surface estimation
step of our algorithm. This accuracy degrades gracefully
as the density and the size of the sensor network decreases.
Furthermore, we show that ranging noise does not prop-
agate through successive layers of localization but instead
the network is able to contain the ranging error by utilizing
estimates by multiple neighbors at each sensor node.

2. BACKGROUND

2.1 Landslides
A landslide is an event where a block of earthen mass

(sliding mass) slides downhill. As per the physics, its weight
pulls the sliding mass down the hill (driving force), and the
shear resistance (resisting force) at the potential slip sur-
face (interface between the sliding mass and the hill) resists
the movement. When the driving force exceeds the resisting
force, a landslide occurs. For a given hill geometry, the driv-
ing force comprises the weight of the soil and/or rock in the
sliding mass, weight of man-made structures and weight of
rain/snow. The resisting force depends on cohesion, friction,

stresses, stress-strain relationship of the material in the slip
surface, and pore water pressure along the slip surface. The
magnitudes of the driving and resisting forces change with
time due to changes in weather conditions (e.g., rain water
leads to increased pore pressure and decreases the resist-
ing force) and other time-dependent activities. For exam-
ple, physical and chemical weathering decreases the resisting
force over time. Material creep may lead to increased pore
pressures and/or instability. Construction of a structure up-
hill increases the driving force. In addition, excavation at
the toe changes the geometry of the hill, potentially driving
a slope from stable to unstable state [7, 19].

While the overall physics underlying a landslide is under-
stood, prediction of the onset of landslide is complicated by
the following spatial-temporal factors:

• Geologic materials are highly heterogeneous with
spatially distributed properties. Satisfactory char-
acterization is needed for successful landslide predic-
tion, but is a formidable task.

• The temporal variation of the driving and resisting
forces dictates the landslide potential, but is difficult
to forecast.

The difficulty to collect sufficiently large measurement sets
has hindered landslide prediction thus far. Sensor networks
on the other hand, can provide a wealth of field data and
thus remove this road block towards effective landslide pre-
diction.

2.2 Landslide Prediction Algorithm
Parameters governing the occurrence of a typical landslide

are schematically shown in Figure 1(a), where h is the slope
height, θ is the slope angle, ω(t) is the rate of water inflow
due to rain and/or runoff, and xi

slip are coordinates of point
i on the slip surface. Typically, the hill may be underlain by
a number of material strata or pockets, each with distinct
set of properties, λk

i (property i of layer/pocket k). W is
the weight of the sliding mass, which includes known (e.g.,
weight of buildings) and unknown (e.g., weight of soil) com-
ponents. The latter depends on the density of soil/rock in
different strata.

Figure 1: Schematic of landslide problem and the
domain used for Finite Element Analysis.

Consider a point i in the vicinity of the potential sliding
mass with Cartesian coordinates (xi, yi, zi) at time t = 0.



The coordinates of this point at any time t is (xi + u1
i , yi +

u2
i , zi + u3

i ), where the vector ui = (u1
i , u

2
i , u

3
i ) is known as

the displacement vector. Our primary interest is to predict
the variation of displacements with time, ui(t). In general
ui(t) changes slowly, whereas a slide may develop over hun-
dreds of days before it leads to a catastrophic failure (Figure
2). Development of an effective warning system requires the
family of functions ui(t) to be predicted accurately before
such a catastrophic event occurs.

Figure 2: Progression of a Landslide (reprinted from
[9]).

The finite element method ( [20]) has the potential to pre-
dict ui(t), provided that the underlying physics is modeled
accurately and the values for input parameters are estimated
accurately. The parameters shown in Figure 1(a) are the in-
put parameters, which are grouped in a vector as Yinput =
{h, θ, λk

i , x
i
slip, ω(t),W}. Given Yinput, the FEM allows the

time history of displacements (ui(t)), velocities(u̇i(t)), stresses
(si) and pore water pressures (pi) at any point i in the slope
to be calculated. We can group these output variables in
a vector as Youtput = (ui, u̇i, si, pi). The input and output
parameters are shown in Figure 1(b).
Yinput can be further divided into two parts as Yinput =

Y known
input + Y unknown

input , where Y known
input includes all easily mea-

surable quantities such as h, θ, ω(t), and a portion of W
(e.g., weight of a building). Also, some of the soil properties
(e.g, shear modulus) and the location of the slip surface xi

slip

can be calculated from sensor readings (without having to
carry out the FEM analysis), and treated as known param-
eters. All remaining parameters are included in Y unknown

input ,
which is to be back calculated from the sensor readings.

The FEM calculates Youtput at any point i, while the sen-
sors are placed only at a subset of the i points. Let Y k

output

be the FEM output at the nodes where sensors are placed,
Sk be the corresponding sensor readings. In an ideal case
where Y unknown

input is known and the FEM represents the me-

chanical behavior perfectly, Y k
output = Sk. Hence an optimal

value for Y unknown
input can be obtained by minimizing a scalar

objective function defined in terms of the difference between
Y k

output and Sk [1–3]. This inverse analysis of system identi-
fication begins with a trial set and computes an optimal set
by a suitable nonlinear optimization method. As the sensor
data is gathered continuously, the procedure is be repeated
at suitable time intervals and Y unknown

input is updated.

3. SYSTEM ARCHITECTURE
The proposed wireless sensor network depicted in Figure

3, consists of a collection of sensor columns placed inside
vertical holes drilled during the network deployment phase
and arranged on a semi-regular grid over the monitored area.
The size of the grid depends on the characteristics of the
site where the network can be deployed with grids scaling
to thousands of sensor columns.

Figure 3: Landslide Warning System.

Each of the sensor columns has two components: The
sensing component that is below ground and contains all
the sensors and the computing component that stays above
ground and contains the processor and radio module.

3.1 Sensor Column
Figure 4 shows one of the network’s sensor columns. Each

column includes four types of sensors: geophones, strain

gages, pore pressure transducers, and reflectometers placed
at regular intervals over the length of the column. Strain
gages are placed on the surface of the tube along its vertical
axis and indicate any bending of the tube caused by ground
movements. Pore pressure transducers and reflectometers
measure negative and positive pore pressure and moisture
content at different depths of each column. Finally, geo-
phones are placed on the outer hull of the tube at regular
intervals. Their role is to measure the changes in distance
between nearby columns at different depths. These sensors
are controlled by a Stargate microserver [6] located at the
end of the tube that is aboveground. Stargates are powered
by rechargeable batteries that are periodically charged by
solar panels.

An intuitive way to think about the system is as two co-
operating networks: the above-ground network among Star-
gates and the below-ground network among sensors. The
topside network (RF network) is used to pass information
from the sensor columns to the analysis station and among
Stargates to coordinate their measurements. The main task
of the below-ground network is to collect displacement mea-
surements using the geophones.

Geophone measurements are coordinated by the Stargates
over the RF network. A column that sensed a movement
(e.g. via its strain gages) notifies over the RF network
columns that are within range, before sending an acous-
tic signal with its seismic source(s). Columns that receive
the notification activate their geophones and associate the
seismic signal with the corresponding column. Because RF
signals travel much faster than the seismic signal, the time
interval between the reception of the radio signal and the
reception of the seismic signal can be used to calculate the
distance between the seismic source and the local geophone.



Specifically, by multiplying the elapsed time with the speed
of sound through soil, the distance between seismic source
and geophone can be estimated. Since only local timestamps
are used in distance calculations, precise time synchroniza-
tion among the sensor network nodes is not necessary.

Unfortunately, the speed of sound is a function of the com-
position and water content of the soil and therefore a cal-
ibration mechanism is necessary. Our solution is based on
the assumption that the initial column locations are known,
allowing the base speed of sound to be calculated. This
base speed is then adjusted to compensate for the measured
changes in water content, using a set of calibration curves,
to produce the calibrated speed of sound. The relative move-
ments of geophones can then be calculated based on that
calibrated speed.

Figure 4: Sensor Column.

By powering off all the instruments (other than their strain
gages), sensor columns can save considerable energy since
for the majority of the time the hill will remain static. Fur-
thermore, note that until the existence of a slip surface is
confirmed, no measurements are sent to the analysis station,
thus reducing the amount of data transmitted and further
reducing energy consumption.

4. PROBLEM FORMULATION
Let X1(t),X2(t), . . . , XN (t), where Xi(t) = (xi(t), yi(t),

zi(t)) ∈ R
3 be the location of sensors at time t. For each

sensor, we assume that distance estimates to sensors within
range r are available. We refer to the set of sensors that
lie within range r of node i as its neighbors and denote the
set as Ni(t). Let D(t) = [dij(t)] be a N ×N measurement
matrix that contains all the available distance information
and defined by

dij(t) ,

(

‖Xi(t) −Xj(t)‖ if i 6= j and Xj(t) ∈ Ni(t)

0 otherwise

(1)
Assume that the initial locations of sensors at time t0 are
known. The sensors operate periodically at discrete time.
That is, measurements D(t) are updated at time t0, t1, t2, . . .

with tk+1 = tk + ∆. For convenience, we denote the mea-
surements at time tk by Dk.

Consider the scenario where a slip surface is formed at
unknown time t∗. To simplify the problem, we can assume
that t∗ = tk∗ for some unknown k∗. Given that our algo-
rithms are incremental, we can drop the dependency on t in
the subsequent discussions. Let

• X1, X2, . . . , XN denote the known locations of sensors
at time t;

• D denote the measurement matrix at time t (note that
all the distances can be derived if needed since loca-
tions are known); and

• D′ denote the measurement matrix available at time
t+ ∆.

Based on this information, we develop distributed algo-
rithms to: (1) Determine whether a slip surface was formed
(at time t); (2) If so, estimate the new sensor location
X ′

1, X
′
2, . . . , X

′
N (at time t+∆); and (3) Compute the loca-

tion of the slip surface.
We claim the above problem can be solved by solving a

set of subproblems discussed in the following sections.

4.1 The detection problem
Detection of the formation of a slip surface is based on

changes in the length of sensor column strain gages. We
assume that the strain gages are properly indexed and de-
note the location of the centroid of strain gage i at time t
by Xs

i = (xs
i , y

s
i , z

s
i ). Denote the length of the strain gage

i at time t as li(t). The distributed detection algorithm
will make the detection decision based on ∆li(t) defined as
li(t+∆)− li(t). The detection problem is then to detect the
formation of a slip surface with unknown location based on
distributed measurements of length changes in strain gages
∆li(t). Let’s assume that the processing nodes are synchro-
nized. We will drop the dependency on t in the following
when it is clear from the context.

To formulate the detection as a hypothesis testing prob-
lem, let H1 denote the hypothesis that a slip surface was
formed, and H0 otherwise. Assume that the slip surface can
be characterized by

ψ(X,Θs) = 0, (2)

where Θs is a vector of parameters and ψ : R
3 → R is a

scalar-valued function given a specific Θs
1. To simplify the

presentation, we will use ψ(Θs) to refer to the slip surface
specified by Eq.(2). Note that Θs is a random vector and we
assume that it has a prior density denoted by pΘs(Θ). It is
expected that a strain gage will experience a (statistically)
large change in its length only if it “intersects” with the slip
surface from Eq.(2). We use Ii to represent the event where
the slip surface “intersects” with the strain gage i and Ic

i to
denote its complement. To determine precisely whether Ii

is true requires the information on the location, the length,
and the orientation of the strain gage i. We will make an
approximation and assume that the intersection occurs if the
center of the strain gage Xs

i is within εl distance from the
slip surface. That is, Ii ≡ {dist(Xs

i , ψ(Θs)) ≤ εl}, where
dist(X,ψ) denotes the distance between X ∈ R

3 and the
slip surface ψ(X,Θs) = 0.

1For a linear slip surface in R
3, ψ(X,Θs) = ax+by+cz+d =

0 with X = (x, y, z)T and Θs = (a, b, c, d)T .



With the notation defined above, the detection problem
can be characterized by the following models for ∆li:

p∆li(l|H0) = P0(l), (3)

p∆li(l|H1, Ii) = P I
1 (l), (4)

p∆li(l|H1, I
c
i ) = P c

1 (l), (5)

where P0(l), P
I
1 (l), and P c

1 (l) are the density functions of
∆li conditioned on their associated hypotheses. We make
a simplifying assumption that the distribution of ∆li given
the hypotheses is independent of i and the location of the
specific strain gage. For example, we assume that ∆li and
∆lj have the same distribution if the slip surface intersects
with the both strain gages i and j. Furthermore, we assume
that {∆li} are mutually independent given the hypothesis
(both H1 and Ii). We will also write

Pi(l) = p∆li(l|H1) = P I
1 (l)P{Ii} + P c

1 (l)P{Ic
i }. (6)

Note that Pi(l) depends on the location of the strain gage
and the slip surface.

Given the power constraint of the system, we use a two-
tier approach to the detection problem. The lower tier con-
sists of local detection based on local measurement at each
strain gage. Once a local detection decision is made, the
network will activate the second tier detection that involves
collaboration of multiple nodes and takes into account the
correlation induced by the global phenomenon (the forma-
tion of the slip surface).

Local detection is based on an outlier detection algorithm
to detect statistically large length changes based on an em-
pirical characterization of the null hypothesis distribution
P0(l)

2. Initially, we assume a simple Gaussian model char-
acterized by the estimated mean m̄l and standard deviation
σ̄l. A local detection is made if |∆li − m̄l|/σ̄l ≥ QG(α/2),
where QG(α/2) is the (1−α/2)-quantile of a standard Gaus-
sian distribution with zero mean and unit variance and α is a
design parameter that dictates the detection and false alarm
trade-offs of the local detection algorithm. The empirical
mean m̄l and standard estimation σ̄l can be estimated from
prior measurements either only locally at the node or within
the node’s neighborhood.

Once local positive detections are made, the neighboring
strain gages collaborate to evaluate whether the local deci-
sions are consistent with the hypothesis that a slip surface as
parameterized by Eq.(2) is formed. This collaborative signal
processing can reduce the false alarms generated from ran-
dom local movements. If appropriate distributions on ∆li
can be defined, we can apply the message passing algorithm,
similar to the one proposed in [17], for the collaborative de-
tection. Without this additional knowledge, we propose a
simple heuristic based on the robust regression technique.
Assume that the strain gage i made a positive detection de-
cision locally. We will correlate this information with local
detection decisions at the strain gages within a neighbor-
hood of strain gage i, denoted by N d

i (including the strain
gage i itself). According to the local detection decision, we
further divide the set N d

i into two subsets: N d+
i that con-

tains nodes with positive local detection, and its complement

2It is possible to use the likelihood ratio Pi(l)
P0(l)

for detection

if knowledge of P I
1 (l), P c

1 (l), and pΘs(Θ) are available.

N d−
i . First we apply the robust regression technique [11]

to fit a linear surface, ψ(X, Θ̄s) to the locations of nodes in
N d+

i . Next, we compute the distance between nodes in N d
i

and the fitted linear surface ψ(X, Θ̄s). The detection hy-
pothesis is then rejected if the number of nodes lying within
εl from the fitted linear surface ψ(X, Θ̄s) in N d−

i exceeds a
threshold.

4.2 The classification problem
Once we determine that a slip surface was formed, we

decide first which sensors are above (and hence have moved)
and which are below the slip surface (and hence have not

moved). We will refer to this problem as the classification
problem.

A simple distributed heuristic can be developed based on
the following insights:

• The distance between two nodes below the slip sur-
face should not change (at least not much statistically)
since both of them have not moved;

• The distance between two points across the slip plane
is likely to change;

• The distance between two nodes above the slip surface
would see a small change since they moved somewhat
together; and

• The nodes located closest to the known rigid part of
the structure are unlikely to move. We will refer to
these nodes as the anchor nodes.

If the sensor range is selected properly so that the neighbor-
hood of any node is “local” (not empty and does not contain
a large portion of the nodes), we claim that the following
simple iterative heuristic solves the distributed classification
problem:

• Let Si ∈ {0, 1, U} be the state of node i, where “0” rep-
resents the “NOT MOVED” decision, “1” the “MOVED”
decision, and “U” the “UNDECIDED” decision.

• Initialize the states of the anchor nodes to 0 and states
of the rest to U .

• For every node i that is not an anchor node, we update
its state based on the majority vote resulting from a
simple voting within its neighborhood (including it-
self). The voting rules are:

1. Nodes with state U do not get to vote. All the
others get one vote each.

2. The node itself votes based on its state Si.

3. Neighbor j with zero or small ∆dij votes based
on its state Sj .

4. Neighbor j with large ∆dij votes based on the
negation of its state S̄j .

• Do not change the state Si if the voting resulted in a
tie.

• Repeat the above voting-based update until all Si ∈
{0, 1} or for some number of iterations.

The convergence of the distributed algorithm given above
can be established under appropriate assumptions on the
neighborhood structure. The simple heuristics described
above is similar to the the max-product algorithms [16] for
solving the maximum a posteriori (MAP) problem.



4.3 The localization problem
After we classify the sensor nodes to those that moved (or

lie above the slip surface), M, and those that stayed sta-
tionary (or lie below the slip surface), Mc, the network will
localize the nodes in M via trilateration. Based on the new
locations determined by this process, the displacements for
nodes in M can be estimated. We denote the displacement
vector of node i in M by ui = X ′

i − Xi. The displace-
ment vectors will be used to estimate the location of the
slip surface and transmitted back to the base station for the
necessary FEM inverse mapping.

Localization of any node in M with enough stationary
neighbors3 in Mc, can be achieved by solving a weighted
least squares problem using the known locations of station-
ary neighbors and the associated distance measurements.
We apply a distributed approach presented in [5]. Specifi-
cally, consider the localization of node i ∈ M. Assume that
there are enough nodes in Ni

T

Mc. Then the location of
node i, X ′

i can be estimated by minimizing the following
objective function

J =
X

j∈Ni

T

Mc

wij (‖X −Xj‖ − dij)
2 , (7)

where Xj ’s are the known locations of stationary neighbors
and wj is a nonnegative scalar that reflects the quality of
the distance measurements4. By the first-order necessary
condition, a local minimum of J , denoted by X∗

i , should
satisfy

X∗
i =

P

j∈Ni

T

Mc

h

wijXj +
wijdij (X∗

i −Xj)

‖X∗

i
−Xj‖

i

P

j∈Ni

T

Mc wij

(8)

The new location of node i, X ′
i , can be obtained by applying

Eq.(8) iteratively with an initial estimate X̂0
i derived from

trilateration:

X̂k+1
i =

P

j∈Ni

T

Mc

h

wijXj +
wijdij(X̂k

i −Xj)

‖X̂k
i
−Xj‖

i

P

j∈Ni

T

Mc wij

(9)

Convergence of this recursive scheme is guaranteed if X̂0
i

is sufficiently close to the global minimum. However, iden-
tification of good initial estimates directly by trilateration
from only range information can be a challenging task in
three-dimensional space. On the other hand, since in our
case the locations prior to the movements {Xi} are known,
the ambiguities for graph realization [15] can be addressed
assuming an upper bound on the amount of displacement
‖ui‖.

For nodes in M that do not have enough stationary neigh-
bors, the same technique can be applied as some or all of
their neighbors are localized. This can be done sequentially
(that is, one node at a time) or in a completely distributed
manner by updating the location based on Eq.(8) at every
node in parallel (as suggested in [5]).

4.4 Slip surface estimation
3In principal, we need at least p+ 1 stationary neighbors to
localize the node , where p is the dimension of the problem.
4For example, we can let wij = σ−2

ij , where σij is the stan-
dard deviation of dij

Once the new locations of displaced nodes are determined,
the slip surface ψ(X,Θs) can be estimated by solving an
optimization problem:

max
Θs

{min {dist(M, ψ(Θs)), dist(M
c, ψ(Θs))}} , (10)

subject to

• ψ(X,Θs) is “consistent” with UM , {ui = X ′
i −

Xi : i ∈ M}, and

• M and Mc are separated by ψ(X,Θs) = 0.5

Where dist(M, ψ(Θs)) is the distance between the set M
and the slip surface (2) and is defined by

dist(M, ψ(Θs)) , min {dist(Xi, ψ(Θs)) : i ∈ M} .

The objective function used in the optimization problem
of Eq.(10) is referred to as the margin in statistical learn-
ing theory where models maximizing the margin have been
shown to generalize well. The appropriate notion of con-
sistency in the optimization constraint will depend on the
specific parameterization used in ψ(Θs). For example, if
a linear slip surface is assumed, then we can say ψ(Θs) is
consistent with the displacements UM if the slip surface is
parallel to the median of UM. Here the median of UM ⊂ R

3,
denoted by ū = (ūx, ūy, ūz)

T is defined as a vector composed
of the medians in each coordinate. That is, ūx is the me-
dian of {ux

i : ui = (ux
i , u

y
i , u

z
i )

T , i ∈ M}. An alternative
definition based on the average of displacements is possible
but could result in undesirable sensitivity to the presence of
outliers.

5. EVALUATION
In order to judge the feasibility of the proposed wireless

sensor network, we evaluate the performance of the slip sur-
face localization algorithm presented in the previous para-
graph. In this initial study, we chose to focus on a set of
structural questions that need to be answered adequately
before any further practical experimentation can be justi-
fied. Specifically, we are interested in the following three
questions: (1)) What is the effect of sensor node density on
prediction accuracy? (2) What is the effect of the “geome-

try” of the sensor grid on prediction accuracy, and (3) How
does ranging noise affect prediction accuracy?

We use an abstract model of the sensor network that as-
sumes all network communications are error-free and no sen-
sor nodes fail. While such an environment is obviously un-
realistic, we use this approach to determine the upper bound

on the accuracy of the proposed algorithms. More realis-
tic tests that evaluate the loss in accuracy due to realistic
deployment conditions are the subject of future work.

5.1 Methodology
We simulated the performance of our algorithms using the

virtual hill shown in Figure 5. We use a two-dimensional hill
and we approximate the slip surface with a slip plane. The
height h of the hill is 40m and we placed sensor columns
at regular intervals (3m) and up to depth of d meters. The
acoustic range of a sensor node is r meters.
5If the two sets cannot be separated by any surface with the
chosen parameterization, then we will select Θs such that
the surface separates the largest subsets.
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We simulated hill movements using the Finite Element
Model developed by one of the authors [1]. Through this
model we were able to create a virtual landslide across the
slip plane shown in Figure 5 and recorded the actual dis-
placements of all the sensor nodes in the network. We
treat the displacements calculated by the FEM model as the
“ground truth” and compare them with the displacements
calculated by our localization algorithm.

Specifically, we use two metrics to measure the accuracy
of the proposed algorithms: (1) the average, as well as the
standard deviation of the error introduced by the localiza-
tion algorithm (§4.3) measured over all the sensor nodes that
moved, and (2) the maximum distance between two points
located on the actual and the estimated slip plane. This
second metric captures the worst spatial deviation between
the calculated and real slip planes and provides an estimate
of how well we can predict its location in the presence of
localization errors and node mis-classifications between sets
M and Mc.

5.2 Node Density
In order to evaluate the effect of node density on predic-

tion accuracy, we vary sensor range r. Table 1 indicates that
the localization algorithm is able to estimate the location of
the moved nodes with high degree of accuracy over all the
sensor ranges.

Node Density Mean Error (m) Std Dev

9.64 0.00269 0.000157
16.45 0.0023 0.000142
19.37 0.0026 0.00018
24.63 0.0022 0.00011
29.99 0.0019 0.00012
33.54 0.0018 0.00010

Table 1: Localization error as a function of node
density (d = 40).

Because the locations of the moved sensor nodes can be
estimated with high accuracy, the slip surface estimation
also produces very accurate results, as Table 2 illustrates.

5.3 Grid Geometry
Next we investigate the effect of the maximum sensor col-

umn depth d necessary to achieve high degree of accuracy.
This is an important consideration, since drilling the holes

Node Density Slip Plane Localization Error

9.64 0.001710
19.37 0.008774
24.63 0.008774
29.99 0.006744
33.54 0.003637

Table 2: Slip Plane Localization error as a function
of node density.

for the sensor columns is a labor-intensive and expensive
process.

Max Node Depth Slip Plane Loc. Error

15 4.07542
20 3.38964
25 2.35554
30 1.68701
35 0.04812

Table 3: Slip Plane Localization error as a function
of maximum node depth. (r = 9.64)

Table 3 presents the slip plane localization error as the
maximum depth d increases. It is evident from this table
that the maximum depth plays a profound role in accuracy.
On the other hand, even at intermediate depths the localiza-
tion error is moderate if we keep in mind that the calculated
slip plane location is only used as initial input to the FEM
model and will be subsequently refined by that model.

5.4 Noise
In our final set of experiments we investigate the effect

of ranging noise in localization accuracy. Specifically we are
interested to estimate how ranging noise propagates as nodes
that have moved during the landslide are localized with the
help of other displaced nodes that have been previously lo-
calized. Given the potentially large size of the deployed
network, the slip surface localization algorithm will produce
inaccurate results if noise propagation is severe.

Error Std. Dev. Mean Error (m) Std Dev

0.1 0.1121 0.0547
0.2 0.1466 0.0753
0.3 0.1871 0.0878
0.4 0.2135 0.1252
0.8 0.3864 0.2210

Table 4: Localization error as a function of noise in
range measurements

We used a Gaussian variable with zero mean and vari-
able standard deviation to model the noise in ranging esti-
mates. Table 4 presents the results from our experiments
for a network of r = 33.54 under increasing levels of noise.
As is evident from this Table, the average localization er-
ror grows slower than the noise level while the deviation of
the localization error grows with the level of noise. These
very encouraging results are due to the high degree of net-
work connectivity that enables node to “cancel” the noise in
range estimates by utilizing the multitude of estimates from
their neighbors.



As our final test, we decrease node density to r = 24.99
and r = 16.45. In those cases the average localization error
was 0.48m and 0.65m respectively, showing that the hypoth-
esized noise propagation does not occur even in networks
with lower density. These results indicate that increasing
the network’s density is a promising strategy to cancel the
negative effects of considerable ranging noise that we expect
to find in geophone measurements.

6. RELATED WORK
Landslide Prediction. Several mechanistic analysis meth-

ods have been used in the past. Simplified momentum trans-
fer models (e.g., [12], [10]) and fluid models [14] have been
used for predicting the spread of debris (i.e., distance trav-
eled by debris) during a landslide. GIS-based, empirical
models have been developed to predict landslide potentials
(e.g., [13], [4]). In some cases, such models have been en-
riched with hydrological models (e.g., [8]). Our work focuses
on the behavior from the onset of movements until a com-
plete slide, rather than the debris flow incurred after-wards.

Very little work is available on analyses for predicting
the failure time. For example, [9] used a simplified, one-
dimensional creep model to simulate the observed failure
time for the Takabayama (Japan) landslide, which occurred
on 22 January, 1970. The hill consisted of a clayey soil.
A field displacement transducer (installed in a tunnel) indi-
cated that the landslide occurred 113 days from the time the
displacement began increasing (shown in Figure 2). How-
ever, it is important to note that Fukuzono’s work is an
after-the-fact analysis while evidence of successful a-priori
failure time prediction cannot be found in the literature.

Sensor Networks. Application of wireless sensor net-
work technologies to the landslide prediction problem is only
a recent concept. Besides the work presented here, a pro-
posal and initial design based on a network of strain gages
is presented in [18]. That proposal focuses on the detection
of specific strain signatures in rocks near the surface (with
strain gages operating at low depth around 25–30cm) that
have been identified as a potential prelude to a landslide.
Our approach relies on the more detailed FEM with an ob-
jective to provide a general framework for early and credible
prediction that can be applied to areas with diverse geologi-
cal characteristics. To provide spatially-distributed informa-
tion necessary for proper instantiation of a FEM, our sensor
network designs involve a heterogeneous set of sensors oper-
ating at a much greater range of depth. The relative efficacy
between the two proposed approaches in terms of the accu-
racy and the lead-time for prediction cannot be determined
without realistic experiments and actual field tests.

7. SUMMARY
In this work we proposed a wireless sensor network for

the prediction of landslides. Such prediction is enabled by
the fact that minute hill movements can be sensed days or
even months before a catastrophic landslide occurs. Our
proposed sensor network uses a collection of instruments to
detect such movements and collectively estimate the dis-
placements of sensor nodes embedded in the hill under ob-
servation. Through these estimates the location of a slip
plane is estimated and passed to an analysis station along
with pertinent soil measurements. These measurements are
used to back-calculate the input parameters of a Finite Ele-

ment model used to predict the possibility and the onset of
a catastrophic landslide.

Our preliminary simulation results are encouraging as they
show that the proposed localized algorithms estimate the
displacements as well as the location of the slip plane with
small errors over a wide range of sensor ranges, deployment
strategies, as well as ranging noise. Emboldened by these
results, we are currently building a small scale prototype of
the system that we will test over medium-size artificial hills
to evaluate the performance of our system under realistic
conditions.
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