Design Tools for Sensor-Based Science

Randal Burns
Andreas Terzis
Department of Computer Science
The Johns Hopkins University

Michael J. Franklin
Department of Electrical Engineering and Computer Science
University of California Berkeley
A High-Level Toolkit

- Deploying a sensor-based experiment is tedious
 - primitive techniques
 - complex systems: distributed and heterogeneous
 - variable and unpredictable

- Trial and error configuration damages sites
 - find rapid solutions – in number of iterations

- Requires substantial time and expertise

- **Critical** need for automated design tools
 - interfaces designed for the scientist
System Goals

- Reduce deployment complexity
 - automatically configure and program an end-to-end data collection and analysis application
 - motes, in-network processing, database schema, datacube
- Simple, intuitive tools to explore tradeoffs among cost, reliability, and network lifetime
 - explore what-if design scenarios prior to deployment
 - no manual tuning of placement or network parameters
- A “design wizard” for sensor-based science
A Soil-Ecology Network

- Meso-scale monitoring of soil-ecology
 - 10 motes in an irregular grid with 3m spacing
 - fills a scientific gap between laboratory (bucket scale) and manual sampling
 - continuous monitoring tracks punctuated events and trends
- Semi-urban, woodland site
 - stream and surface water
 - WiFi and EM interference
Sample Results

- Continuous monitoring
 - temporal scale is most scientifically unique
- Integrates external data sources
 - rainfall at BWI (~10 miles away)
- Fine-grained variability within a 10 m grid
Motivation: Our Experience

Deploying a sensor network for site-monitoring:

- Is labor intensive
 - 400 person hours including 80 faculty hours
- Demands expertise
 - 5 computer scientists and 2 physicists for every ecologist
 - programming heterogeneous, distributed systems
- Uses custom components
 - soldering, device drivers, reliable transfer protocol
- Requires manual tuning
 - just to connect to all motes
Cartographic Interface

- Drag and drop hardware to monitoring sites on a map
 - configure sampling discipline
- Annotate transmission properties and obstacles
- Write simple (excel-like) equations
Ask for a Solution?!

- Enhanced network with relays and gateways
 - subject to a hardware budget
- Availability and lifetime properties of network
 - annotations of link properties
Link Quality Indicators

- Network link performance
 - is “relatively” unpredictable
 - varies temporally and spatially
Network Design

- Requires site-specific signal propagation model
 - connectivity among nodes and its time variance
- Iterative refinement
 - of existing network models over time
 - from initial networks to subsequent deployments
- Take user/expert input
 - obstacles: from an obstacle library
 - annotate clear paths and regions of attenuation
- Goal: construct a practical, experimental model
 - purely analytical modeling has complexity and applicability concerns
Network Design Tool

- **Inputs**
 - Site information: size, layout, type, obstacles
 - Existing network model from previous deployment
 - Hardware (allocated and unallocated) and properties

- **Outputs**
 - Topology: augmented network with relays and gateways
 - Network quality: least-lossy tree
Finding Solutions Rapidly

- Many sites are fragile and hostile to hardware
 - high-variance in performance metrics
 - frequent failures
- Avoid damaging site incursions
 - from trial and error configuration and repair
- Design-based deployment strategies
 - a small network to “learn” site characteristics
 - condition transmission models
 - followed by a full-scale deployment
 - achieve a solution rapidly and accurately
 - minimally overprovision in few iterations
Data Design

● Data-driven application programming

● Automatic construction of:
 - database schema
 - analysis tools, e.g. datacube
 - network data handling: stream processing
 - integration of external data sources
 - Interfaces: forms and Web-services

● Two-levels of data processing
 - Declarative mid-tier processing (on motes and gateways)
 ● process inbound data and populate the database
 - Data services: store and analyze data
Architecture

- Layers of network and data virtualization
- Redundant function in mid-tier and data services
 - data services are archival
Declarative Mid-Tier Processing

- Built on HiFi data processing system
 - focused on self-management and ease-of-use aspects in error-prone environments
- Stream processing software on gateway devices
 - computes aggregates and filters
 - correlates/merges multiple data streams
- Benefits of a declarative approach
 - automatic and dynamic query optimization
 - including query reuse, i.e. result caching
 - incorporate a wide range of data sources
Data Cleaning

- Discrepancies between physical and digital world
 - inherent ambiguities and inconsistencies
 - variance and unreliability of data acquisition devices
- Virtual Devices
 - data pipeline
 - fuse results from multiple sensors
- Notions of answer quality:
 - error bounds
 - confidence intervals
Concluding Remarks

- Many difficult problems
 - network provisioning solves the Facility Location problem
 - automated generation of data analysis

- Eliminate barriers to sensor deployments
 - make sensors accessible to ecologists (and others)
 - unlock the potential of sensor networks

- Evaluation plan
 - growing our network to 200 motes at 2 Baltimore sites