Outline

• Internet Intra-Domain Routing
 – Distance Vector
 – Shortest Path
Forwarding Table

- terzis@peregrine(~)> netstat -nr
Routing Table:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Ref</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.220.13.0</td>
<td>128.220.13.85</td>
<td>U</td>
<td>3</td>
<td>8438</td>
<td>le0</td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>128.220.13.85</td>
<td>U</td>
<td>3</td>
<td>0</td>
<td>le0</td>
</tr>
<tr>
<td>default</td>
<td>128.220.13.1</td>
<td>UG</td>
<td>0</td>
<td>58348</td>
<td>le0</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>0</td>
<td>668</td>
<td>lo0</td>
</tr>
</tbody>
</table>

- How are entries inserted in fwd table?
 - **Statically** (route add, route delete)
 - ICMP Redirects
 - Dynamic Routing Protocols
ICMP Redirects

- Default router informs host that better router exists
 - How does it know that?
- Host adds a new entry in it’s routing table
 - Security concerns?
What is Routing?

- Routing is the core function of a network
- It ensures that
 - Information accepted for transfer at a source node
 - Is delivered to the correct set of destination nodes, at reasonable levels of performance.
Internet Routing

- Internet organized as a two level hierarchy
- First level – autonomous systems (AS’s)
 - AS – region of network under single administrative control
- AS’s run an intra-domain routing protocols
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4
Example

AS-1

AS-2

AS-3

Interior router

BGP router
Intra-domain Routing Protocols

- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford
 - Each neighbor periodically exchange reachability information to its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra
 - Each network periodically floods immediate reachability information to other routers
 - Fast convergence, but high communication and computation overhead
Distance Vector Routing Algorithm

- Iterative: continues until no nodes exchange info
- Asynchronous: nodes need not exchange info/iterate in lock step
- Distributed: each node communicates only with directly-attached neighbors
- Each router maintains
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X \rightarrow best known distance from X to Y, via Z as next hop (remember this !)
- Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Distance Vector Routing

- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor: its least cost path change from neighbor to destination
- Each node notifies neighbors only when its least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:

1. wait for (change in local link cost or msg from neighbor)
2. recomputes distance table
3. if least cost path to any dest has changed, notify neighbors
Distance Vector Algorithm (cont’d)

1 *Initialization:*
2 for all nodes V do
3 if V adjacent to A
4 $D(A, V) = c(A, V)$;
5 else
6 • $D(A, V) = \infty$;
7 • *loop:*
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if ($D(A, V)$ changes by d)
11 for all destinations Y through V do
12 $D(A, Y) = D(A, Y) + d$
13 else if (update $D(V, Y)$ received from V)
14 /* shortest path from V to some Y has changed */
15 $D(A, Y) = D(A, V) + D(V, Y)$;
16 if (there is a new minimum for destination Y)
17 send $D(A, Y)$ to all neighbors
18 forever
Example: Distance Vector Algorithm

Initialization:
1. for all nodes V do
2. if V adjacent to A
3. D(A, V) = c(A, V);
4. else
5. D(A, V) = \infty;
6. ...
Example: 1st Iteration (C \rightarrow A)

\begin{itemize}
\item \textbf{Node A:}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Dest. & Cost & NextHop \\
\hline
B & 2 & B \\
C & 7 & C \\
D & 8 & C \\
\hline
\end{tabular}
\end{center}
\end{itemize}

\begin{itemize}
\item \textbf{Node B:}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Dest. & Cost & NextHop \\
\hline
A & 2 & A \\
C & 1 & C \\
D & 3 & D \\
\hline
\end{tabular}
\end{center}
\end{itemize}

\begin{itemize}
\item \textbf{Node C:}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Dest. & Cost & NextHop \\
\hline
A & 7 & A \\
B & 1 & B \\
D & 1 & D \\
\hline
\end{tabular}
\end{center}
\end{itemize}

\begin{itemize}
\item \textbf{Node D:}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Dest. & Cost & NextHop \\
\hline
A & \infty & - \\
B & 3 & B \\
C & 1 & C \\
\hline
\end{tabular}
\end{center}
\end{itemize}

7 loop:

else if (update D(V, Y) received from V)
\begin{align*}
D(A, Y) &= D(A, V) + D(V, Y); \\
if & \text{ (there is a new min. for destination Y)} \\
send & D(A, Y) \text{ to all neighbors} \\
forever &
\end{align*}
Example: 1st Iteration ($B \rightarrow A$, $C \rightarrow A$)

<table>
<thead>
<tr>
<th>Node A</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node B</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

D(A,D) = D(A,B) + D(B,D) = 2 + 3 = 5

D(A,C) = D(A,B) + D(B,C) = 2 + 1 = 3

7 loop:

...

13 else if (update D(V, Y) received from V)
14 D(A,Y) = min(D(A,V), D(A,V) + D(V, Y))
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\infty</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>
Example: End of 1st Iteration

7 \textit{loop}:

\[\ldots \]

13 \textbf{else if} (update D(V, Y) received from V)
14 \hspace{1em} D(A, Y) = D(A, V) + D(V, Y);
15 \textbf{if} (there is a new min. for destination Y)
16 \hspace{1em} \textbf{send} D(A, Y) to all neighbors
17 \textbf{forever}
Example: End of 2^{nd} Iteration

7 \textbf{loop:}

\hspace{1cm} \ldots

13 \textbf{else if} (update D(V, Y) received from V)
14 \hspace{1cm} D(A, Y) = D(A, V) + D(V, Y);
15 \textbf{if} (there is a new min. for destination Y)
16 \hspace{1cm} \textbf{send} D(A, Y) to all neighbors
17 \textbf{forever}

Nothing changes \rightarrow \text{algorithm terminates}
Distance Vector: Link Cost Changes

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (D(A, V) changes by d)
11 for all destinations Y through V do
12 \[D(A, Y) = D(A, Y) + d \]
13 else if (update D(V, Y) received from V)
14 \[D(A, Y) = D(A, V) + D(V, Y); \]
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

“good news travels fast”
Distance Vector: Count to Infinity

Problem

Link cost changes here; recall from slide 23 that B also maintains shortest distance to A through C, which is 6. Thus $D(B, A)$ becomes 6!
Distance Vector: Poisoned

If C routes through B to get to A:
- C tells B its (C’s) distance to A is infinite (so B won’t route to A via C)
- Will this completely solve count to infinity problem?

Link cost changes here: B updates \(D(B, A) = 60 \) as C has advertised \(D(C, A) = \infty \)

Algorithm terminates
Outline

- Distance Vector
- Link State
Link State Flooding Example
Link State Flooding Example
Link State Flooding Example
Link State Flooding Example
Dijsktra’s Algorithm

1 *Initialization:*
2 \(S = \{A\} \);
3 for all nodes \(v \)
4 \hspace{1em} if \(v \) adjacent to \(A \)
5 \hspace{2em} then \(D(v) = c(A,v) \);
6 \hspace{1em} else \(D(v) = \infty \);
7
8 *Loop*
9 \hspace{1em} find \(w \) not in \(S \) such that \(D(w) \) is a minimum;
10 \hspace{1em} add \(w \) to \(S \);
11 \hspace{1em} update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
12 \hspace{2em} \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13 \hspace{3em} \(\text{// new cost to } v \text{ is either old cost to } v \text{ or known} \)
14 \hspace{3em} \(\text{// shortest path cost to } w \text{ plus cost from } w \text{ to } v \)
15 **until all nodes in \(S \);**
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ∞;

…
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td></td>
<td>2,D</td>
<td>∞</td>
</tr>
</tbody>
</table>

Loop

9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
13 until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td></td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td>4,E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop

9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
13 until all nodes in S;

CS 349/Fall06 28
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) ; \]
13 {until all nodes in S;}
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td></td>
<td>3,E</td>
<td></td>
<td>4,E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop

9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \];
13 until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop:
8 find w not in S s.t. D(w) is a minimum;
9 add w to S;
10 update D(v) for all v adjacent to w and not in S:
11 D(v) = min(D(v), D(w) + c(w,v));
12 until all nodes in S;
Complexity

• Assume a network consisting of n nodes
 - Each iteration: need to check all nodes, w, not in S
 - \(n \times (n+1)/2 \) comparisons: \(O(n^2) \)
 - More efficient implementations possible: \(O(n \times \log(n)) \)