Internet Protocols
Fall 2005
Final Review
Andreas Terzis
Final

• Saturday Dec 17th
 - 2-4pm am
 - Shaffer 304

• Details
 - Closed books
 - Bring a calculator
 - Combination of quantitative and qualitative questions
Transport Protocols

- Provide end-to-end services on top of raw, unreliable packet delivery
- UDP: User Datagram Protocol
- TCP: Transmission Control Protocol
Common Functionality

• Demultiplexing: Source/Destination ports
• Checksum (optional in UDP)
How Data Gets End-to-End

• MAC address (from ARP)
• IP address (from DNS)
• Protocol (in IP header)
• Port # (from OS)
Additional TCP Functionality

- Reliable delivery
- Congestion control
TCP Reliable Delivery

- Sender waits for ACK of data
 - if data not ACK’ed, retransmit

- Sliding window approach:
 - Allow W packets in flight at any time
 - ACK last packet received

- Two signs for retransmission:
 - timeout
 - duplicate ACKs
Congestion Control

• Signals of congestion:
 - Packet drops: timeouts or duplicate ACKs
 - Explicit signals: ECN

• Three goals:
 - quickly approach the available bandwidth
 - adjust to small (and large) variations in bandwidth
 - share bandwidth fairly with other flows
Slow-Start

- Increase cwnd by 1 for every ACK until cwnd hits ssthresh
- Sending rate increases exponentially (until queueing sets in or sshtresh is hit)
Congestion-Avoidance

- Cwnd increase by 1/cwnd for every ACK
- Set ssthresh = cwnd/2 upon loss
- Cwnd decreases by 1/2 upon 3 duplicate ACKs
- Cwnd goes to 1 upon timeout
Window Dynamics

- Cwnd increases quickly
- Begins oscillating around appropriate value
- As long as no timeout, can usually keep pipe full
Why AIMD?

- MIMD and AIAD could also work
- But neither results in fair bandwidth allocation
AIMD Sharing Dynamics

- No congestion \Rightarrow rate increases by one packet/RTT every RTT
- Congestion \Rightarrow decrease rate by factor 2

Rates equalize \Rightarrow fair share
AIAD Sharing Dynamics

- No congestion \rightarrow x increases by one packet/RTT every RTT
- Congestion \rightarrow decrease x by 1
Limit rates: \(x = y \)
Limit rates: x and y depend on initial values.
TCP Congestion Control Summary

• Measure available bandwidth
 – slow start: fast, hard on network
 – AIMD: slow, gentle on network

• Detecting congestion
 – timeout based on RTT
 • robust, causes low throughput
 – Fast Retransmit: avoids timeouts when few packets lost
 • can be fooled, maintains high throughput

• Recovering from loss
 – Fast recovery: don’t set cwnd=1 with fast retransmits
Quality-of-Service

• Integrated Services (IntServ)
 - services: controlled load and guaranteed service
 - RSVP (reservation protocol)
 - packet scheduling algorithms
 - admission control algorithms
 • measurement-based for controlled load
 • worst-case for guaranteed service

• Differentiated Services (DiffServ)
 - per-hop behaviors
 - think of priority levels (specified by ToS bits)
Application Layer

- DNS
- HTTP/CDN
- Peer-to-Peer
- Security
- Multimedia protocols
From Names to Addresses

• Users use hostnames
• Protocols use IP addresses
• DNS translates between them
Naming Hierarchy

Names provide:
- Easy mnemonic
- Level of indirection

Hierarchy provides
- scalability
- fate-sharing and trust model
- local management (uniqueness)
Simple DNS Example

Host `whistler.cs.cmu.edu` wants IP address of `www.berkeley.edu`

1. Contacts its local DNS server, `mango.srv.cs.cmu.edu`

2. `mango.srv.cs.cmu.edu` contacts root name server, if necessary

3. Root name server contacts authoritative name server, `ns1.berkeley.edu`, if necessary
HTTP overview

HTTP: hypertext transfer protocol
- Web's application layer protocol
- client/server model
 - client: browser that requests, receives, "displays" Web objects
 - server: Web server sends objects in response to requests
- HTTP 1.0: RFC 1945
- HTTP 1.1: RFC 2068
HTTP Topics

• Non-persistent vs. persistent connections
• Authorization
• Cookies
• Client-side Caching and conditional GETs
HTTP-TCP Interactions

- Effects of losses on HTTP
 - If first segment is lost long retx timer
 - HTTP responses are short->no duplicate acks
- Slow-start restart
- TIME_WAIT state on servers
- Nagle’s algorithm and HTTP
- Delayed ACKs
Redirection Overlay

Geographically distributed server clusters

Internet Backbone

Distributed request-redirectors
Story for CDNs

• Traditional: *Performance*
 - move content closer to the clients
 - avoid server bottlenecks

• New: *DDoS Protection*
 - dissipate attack over massive resources
 - multiplicatively raise level of resources needed to attack
Redirection Techniques

- **DNS**
 - one name maps onto many addresses
 - works for both servers and reverse proxies

- **HTTP**
 - requires an extra round trip

- **Router**
 - one address, select a server (reverse proxy)
 - content-based routing (near client)

- **URL Rewriting**
 - embedded links
Peer-to-Peer

• DNS maps names into addresses
 – host-centric

• Peer-to-peer allows users to search directly for content
 – data-centric

• Two basic styles:
 – unstructured (Gnutella): flood requests
 – structured (DHTs): exact matching
Multimedia Applications

• Multimedia applications are a different class of applications
 - Examples: A/V (streaming and conferencing), games
 - Have different requirements
 - Require different application protocols
 • Signaling (RSVP)
 • Transport (RTP)
 • Session Control (SIP)
The end

• Thank you!
 Good luck!