Internet Protocols
Fall 2004

Final Review
Andreas Terzis

Final

- Thursday Dec 16th
 - 9-11 am
 - Shaffer 304
- Details
 - Closed books
 - Bring a calculator
 - Combination of quantitative and qualitative questions
Transport Protocols

- Provide end-to-end services on top of raw, unreliable packet delivery
- UDP: User Datagram Protocol
- TCP: Transmission Control Protocol

Common Functionality

- Demultiplexing: Source/Destination ports
- Checksum (optional in UDP)
How Data Gets End-to-End

- MAC address (from ARP)
- IP address (from DNS)
- Protocol (in IP header)
- Port # (from OS)

Additional TCP Functionality

- Reliable delivery
- Congestion control
Timing Diagram

- SYN k; 3-way handshake
- SYN n; ACK k+1
- DATA k+1; ACK n+1
- ACK k+n+1; data exchange

TCP Reliable Delivery

- Sender waits for ACK of data
 - if data not ACK’ed, retransmit
- Sliding window approach:
 - Allow W packets in flight at any time
 - ACK last packet received
- Two signs for retransmission:
 - timeout
 - duplicate ACKs
Congestion Control

- Signals of congestion:
 - Packet drops: timeouts or duplicate ACKs
 - Explicit signals: ECN
- Three goals:
 - quickly approach the available bandwidth
 - adjust to small (and large) variations in bandwidth
 - share bandwidth fairly with other flows

Slow-Start

- Increase cwnd by 1 for every ACK until cwnd hits ssthresh
- Sending rate increases exponentially (until queueing sets in or ssthresh is hit)
Congestion-Avoidance

- Cwnd increase by 1/cwnd for every ACK
- Set ssthresh = cwnd/2 upon loss
- Cwnd decreases by 1/2 upon 3 duplicate ACKs
- Cwnd goes to 1 upon timeout

Window Dynamics

- Cwnd increases quickly
- Begins oscillating around appropriate value
- As long as no timeout, can usually keep pipe full
Why AIMD?

- MIMD and AIAD could also work
- But neither results in fair bandwidth allocation

AIMD Sharing Dynamics

- No congestion \rightarrow rate increases by one packet/RTT every RTT
- Congestion \rightarrow decrease rate by factor 2
AIAD Sharing Dynamics

- No congestion → x increases by one packet/RTT every RTT
- Congestion → decrease x by 1

AIMD

Limit rates: $x = y$
TCP Congestion Control

Summary

- Measure available bandwidth
 - slow start: fast, hard on network
 - AIMD: slow, gentle on network
- Detecting congestion
 - timeout based on RTT
 - robust, causes low throughput
 - Fast Retransmit: avoids timeouts when few packets lost
 - can be fooled, maintains high throughput
- Recovering from loss
 - Fast recovery: don't set cwnd=1 with fast retransmits
Quality-of-Service

- Integrated Services (IntServ)
 - services: controlled load and guaranteed service
 - RSVP (reservation protocol)
 - packet scheduling algorithms
 - admission control algorithms
 * measurement-based for controlled load
 * worst-case for guaranteed service
- Differentiated Services (DiffServ)
 - per-hop behaviors
 - think of priority levels (specified by ToS bits)

Application Layer

- DNS
- HTTP/CDN
- Peer-to-Peer
- Security
- Multimedia protocols
From Names to Addresses

- Users use hostnames
- Protocols use IP addresses
- DNS translates between them

Naming Hierarchy

Names provide:
- Easy mnemonic
- Level of indirection

Hierarchy provides
- scalability
- fate-sharing and trust model
- local management (uniqueness)
Simple DNS Example

Host \texttt{whistler.cs.cmu.edu} wants IP address of \texttt{www.berkeley.edu}
1. Contacts its local DNS server, \texttt{mango.srv.cs.cmu.edu}
2. \texttt{mango.srv.cs.cmu.edu} contacts root name server, if necessary
3. Root name server contacts authoritative name server, \texttt{nsl.berkeley.edu}, if necessary

HTTP overview

HTTP: hypertext transfer protocol
- Web's application layer protocol
- \texttt{client} model
 - \texttt{client}: browser that requests, receives, "displays" Web objects
 - \texttt{server}: Web server sends objects in response to requests
- HTTP 1.0: RFC 1945
- HTTP 1.1: RFC 2068
HTTP Topics

- Non-persistent vs. persistent connections
- Authorization
- Cookies
- Client-side Caching and conditional GETs

HTTP-TCP Interactions

- Effects of losses on HTTP
 - If first segment is lost long retransmit timer
 - HTTP responses are short->no duplicate ACKs
- Slow-start restart
- TIME_WAIT state on servers
- Nagle’s algorithm and HTTP
- Delayed ACKs
Redirection Overlay

Geographically distributed server clusters

Internet Backbone

clients

Distributed request-redirectors

Story for CDNs

- **Traditional:** *Performance*
 - move content closer to the clients
 - avoid server bottlenecks
- **New:** *DDoS Protection*
 - dissipate attack over massive resources
 - multiplicatively raise level of resources needed to attack
Redirection Techniques

• DNS
 - one name maps onto many addresses
 - works for both servers and reverse proxies
• HTTP
 - requires an extra round trip
• Router
 - one address, select a server (reverse proxy)
 - content-based routing (near client)
• URL Rewriting
 - embedded links

Peer-to-Peer

• DNS maps names into addresses
 - host-centric
• Peer-to-peer allows users to search directly for content
 - data-centric
• Two basic styles:
 - unstructured (Gnutella): flood requests
 - structured (DHTs): exact matching
Multimedia Applications

- Multimedia applications are a different class of applications
 - Examples: A/V (streaming and conferencing), games
 - Have different requirements
 - Require different application protocols
 - Signaling (RSVP)
 - Transport (RTP)
 - Session Control (SIP)

The end

- Thank you!
 Good luck!