Router Support For Congestion Management

- Traditional Internet
 - Congestion control mechanisms at end-systems, mostly implemented in TCP
 - Routers play little role
- Router mechanisms affecting congestion management
 - Scheduling
 - Buffer management
- Traditional routers
 - FIFO
 - Tail-drop

Drawbacks of FIFO with Tail-drop

- How to pick buffer size?
 - Small router buffers: TCP connections get many losses during slow start
 - Large buffers: unnecessary delay
- Buffer lock out by misbehaving flows
- Synchronizing effect for multiple TCP flows [ZSC91]
- Burst or multiple consecutive packet drops
 - Bad for TCP fast recovery

Underlying problem with Drop Tail

- No way to differentiate between transient and persistent congestion
- Router has no control over packet drops
RED Approach

- Distinguish between transient and persistent congestion
 - Design the network to accommodate bursty traffic
 - Gateway is the most effective decision point for persistent congestion
 - Use FIFO scheduling
 - Low overhead, good scaling characteristics, reduces delay
 - Allow gradual deployment

RED

- FIFO scheduling
- Buffer management:
 - Probabilistically discard packets
 - Probability is computed as a function of average queue length (why average?)

RED (cont’d)

- min_th - minimum threshold
- max_th - maximum threshold
- avg_len - average queue length

\[\text{avg}_\text{len} = (1-w) \times \text{avg}_\text{len} + w \times \text{sample}_\text{len} \]
RED (cont’d)

- \(P = \max_P \times \left(\frac{\text{avg}_\text{len} - \text{min}_\text{th}}{\text{max}_\text{th} - \text{min}_\text{th}} \right) \)

- Improvements to spread the drops
 \(P' = P/(1 - \text{count}^P) \), where
 \(\text{count} \) - how many packets were consecutively enqueued since last drop.

<table>
<thead>
<tr>
<th>Discrim Probability</th>
<th>Average Queue Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max_P)</td>
<td>(\text{avg}_\text{len})</td>
</tr>
<tr>
<td>(\min_\text{th})</td>
<td>(\text{max}_\text{th})</td>
</tr>
</tbody>
</table>

Comparison with Drop Tail

- The probability that a connection is notified is proportional to the connection’s share of the router’s bandwidth

- Packet drops can be used to identify misbehaving users
 - Can be used to further penalize them
 - Penalty Box
 - Pushback

Misbehaving Users
RED Advantages

- Absorb burst better
- Avoids synchronization
- Signal end systems earlier

Problems with RED

- No protection: if a flow misbehaves it will hurt the other flows
- Example: 1 UDP (10 Mbps) and 31 TCP's sharing a 10 Mbps link

![Graph showing throughput vs. flow number for UDP and RED]

Promoting E2E Congestion Control

[FF99]

- Congestion control was critical factor to the success of the Internet
 - Network no longer a small testbed for friendly researchers
 - Fundamental change that has multiple consequences
 - Network has to take active role in protecting from misbehaving end users
 - Possible solutions
 - Deploy isolation mechanisms (e.g. Fair Queuing)
 - Provide incentives for continued use of e2e congestion control
 - Pricing mechanisms
 - Can mix and match

What does e2e congestion control provide?

- Avoid congestion collapse
- Provide Fairness
Unfairness example

About congestion collapse
- Classical Congestion Collapse
 - Paths clogged with unnecessarily-retransmitted packets
 - Fix: TCP retransmit timers and congestion control algorithm
- Congestion collapse from undelivered packets
 - Paths are clogged with packets that are discarded before they reach the receiver
 - Due to applications not using E2E congestion control

Goodput
- Bandwidth delivered to receiver excluding duplicate packets

Limits of scheduling discipline
- WRR/FQ limit the resources individual flows receive
 - Not helpful when large percentage of flows are misbehaving
Building the right incentives

- What do we need in the network architecture to induce applications to employ e2e congestion control?
- Discover unresponsive flows and regulate them
 - How to discover these flows
 - How to regulate them