What is Layering?

- A technique to organize a network system into a succession of logically distinct entities, such that the service provided by one entity is solely based on the service provided by the previous (lower level) entity.

Why Layering?

- No layering: each new application has to be re-implemented for every network technology!
Why Layering?

- Solution: introduce an intermediate layer that provides a unique abstraction for various network technologies

Layering

- Advantages
 - Modularity - protocols easier to manage and maintain
 - Abstract functionality - lower layer can be changed without affecting the upper layer
 - Reuse - upper layer can reuse the functionality provided by lower layer

- Disadvantages
 - Information hiding - inefficient implementations

ISO OSI Reference Model

- ISO - International Standard Organization
- OSI - Open System Interconnection
- Started to 1978; first standard 1979
 - ARPANET started in 1969; TCP/IP protocols ready by 1974
- Goal: a general open standard
 - Allow vendors to enter the market by using their own implementation and protocols
Data Transmission
- A layer can use only the service provided by the layer immediate below it
- Each layer may change and add a header to data packet

OSI Model Concepts
- Service - says what a layer does
- Interface - says how to access the service
- Protocol - says how is the service implemented
 - A set of rules and formats that govern the communication between two peers

Data and Control Planes
- Data plane: concerned with
 - Packet forwarding
 - Buffer management
 - Packet scheduling
- Control Plane: concerned with installing and maintaining state for data plane

Example: Routing
- Data plane: use Forwarding Table to forward packets
- Control plane: construct and maintain Forwarding Tables (e.g., Distance Vector, Link State protocols)
OSI vs. TCP/IP

- OSI: conceptually define: service, interface, protocol
- Internet: provide a successful implementation

Key Design Decision

- How do you divide functionality across the layers?

Overview

- Layering
 - End-to-End Arguments
- A Case Study: the Internet

End-to-End Argument

- Think twice before implementing a functionality that you believe that is useful to an application at a lower layer
- If the application can implement a functionality correctly, implement it at a lower layer only as a performance enhancement
Example: Reliable File Transfer

- Solution 1: make each step reliable, and then concatenate them
- Solution 2: end-to-end check and retry

Discussion

- Solution 1 not complete
 - What happens if the sender or/and receiver misbehave?
 - The receiver has to do the check anyway!
- Thus, full functionality can be entirely implemented at application layer; no need for reliability from lower layers
- Is there any need to implement reliability at lower layers?

Discussion

- Yes, but only to improve performance
- Example:
 - Assume a high error rate on communication network
 - Then, a reliable communication service at datalink layer might help

Trade-offs

- Application has more information about the data and the semantic of the service it requires (e.g., can check only at the end of each data unit)
- A lower layer has more information about constraints in data transmission (e.g., packet size, error rate)
- Note: these trade-offs are a direct result of layering!
Rule of Thumb

- Implementing a functionality at a lower level should have minimum performance impact on the application that do not use the functionality

Other Examples

- Secure transmission of data
- Duplicate message suppression
- RISC vs. CISC

Overview

- Layering
- End-to-End Arguments
 - A Case Study: the Internet

Goals

0 Connect existing networks
 - Initially ARPANET and ARPA packet radio network
1. Survivability
 - Ensure communication service even in the presence of network and router failures
2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Must be cost effective
6. Allow host attachment with a low level of effort
7. Allow resource accountability
Connect Existing Networks

- Existing networks: ARPANET and ARPA packet radio
- Decision: packet switching
 - Existing networks already were using this technology
- Packet switching → store and forward router architecture

- Internet: a packet switched communication network consisting of different networks connected by store-and-forward routers

Survivability

- Continue to operate even in the presence of network failures (e.g., link and router failures)
 - As long as the network is not partitioned, two endpoint should be able to communicate. moreover, any other failure (excepting network partition) should be transparent to endpoints
- Decision: maintain state only at end-points (fate-sharing)
 - Eliminate the problem of handling state inconsistency and performing state restoration when router fails
- Internet: stateless network architecture

Services

- At network layer provides one simple service: best effort datagram (packet) delivery
- Only one higher level service implemented at transport layer: reliable data delivery (TCP)
 - performance enhancement, used by a large variety of applications (Telnet, FTP, HTTP)
 - does not impact other applications (can use UDP)
- Everything else implemented at application level

Key Advantages

- The service can be implemented by a large variety of network technologies
- Does not require routers to maintain any fine grained state about traffic. Thus, network architecture is
 - Robust
 - Scalable
Other goals

- Distributed Management
 - Not there yet
- Cost effectiveness
 - Packet Headers: Do we really care?
 - E2E Retransmissions
- Accounting
 - No mechanisms for (fine-grain) packet counting mechanisms
 - Flat-Rate pricing
 - Datagrams don’t help

Other Points

- Architecture vs. Implementation
 - The architecture allows different implementations
 - Different implementations will provide different services
 - A lot of engineering required
- Diverse administration is a more difficult problem
 - No one has complete control of the network
 - Maybe not everyone follows the same rules
 - Different users have different goals