On Distributed Communication Networks [Baran64]

- What is the problem that Baran is trying to solve?
 - Create a network that survives massive attack
 - This is the Cold War

- Background
 - Telephone Network: Increase the network reliability by increasing the reliability of individual components

- What is the metric used?
 - Percentage of hosts surviving the attack and stay connected to the largest group of surviving nodes?

Types of Networks

- Which network is more vulnerable?
 - Centralized: Take out central node and node is disconnected
 - Single Point of Failure

- Question answered in this paper:
 - What is the level of vulnerability or robustness of distributed networks

- How to characterize distributed networks?
 - Redundancy Level
Redundancy Level

- Network with minimum number of links has R=1
- For R >= 3 can have multiple equivalent ways to construct the network

Survivability under random attack

- R=3 produces good results
- Choice of degree depends on expected attack level

Survivability as a function of node reliability

- With R=3 even 50% of the links can fail

Combination of link and node destruction

The benefit of dynamic routing

- What if we could pre-compute diverse paths?
 - Dynamic routing is again superior

On Future Systems

- The ability to have a large network with dense connectivity is more important than individual component reliability
- [Baran64] also introduces:
 - Packets
 - Dynamic Routing techniques
 - Hot Potato Routing
 - Similar to learning algorithm using by Ethernet switches

Paper extensions

- What else would you like to see?
 - 1.
 - 2.
 - 3.

- What does the Internet today look like?
 - Will come back to this question later
 - How can you find out?

[CK74] A Protocol for Packet Network Intercommunication

- This is the pre-Internet era
 - ARPAnet was created to share computer resources
 - ARPAnet was one of the first packet networks
 - Cyclades
- How do you connect different packet networks?
Network Abstraction
- Network contains hosts and packet switches
- Network Operation
 - Processes on host communicate with each other using app-level protocol
 - First paper advocating the separation of TCP from IP
 - Send packets to the network
 - Switches route packet according to address

Differences among Packet Networks
- Addressing
- Packet sizes
- Services offered by the network
 - Reliability
 - Error conditions are expressed differently

Gateway
- Entity that transforms data units crossing network boundaries
- Implemented as two halves
 - Each half can "speak" the local network language
- What is needed to exchange information among different networks
 - Global Address
 - Mechanism to map address in other network to gateway

Packet Encapsulation
- Local Header
- Internetwork header
 - Source and Destination Addr
- Data and checksum
- Fragmentation may occur
 - Re-assembly should happen at the end-host
- Does it start to look like MAC+IP+data?
Process Level Communication

- Transmission Control Protocol (TCP)
 - Tasks
 - Multiplexing-Demultiplexing
 - TCP level identifiers: ports
 - Segmentation, Reassembly and Sequencing
 - Sequence Numbers, counting bytes, why?
 - Retransmissions and duplicate detection
 - Timers and positive acknowledgements
 - Window-based reliable protocol
 "It is our expectation that the HOST level retransmission mechanism will not be called upon very often in practice"... "However, the inclusion of a HOST retransmission capability makes it possible to recover from occasional network problems."

TCP Tasks (cont.)

- Flow Control
 - Receiver can shrink the size of the advertised window
- Buffering application data
- Connection establishment and teardown

Paper extensions

- What did you think the design missed?
 - 1.
 - 2.
 - 3.
- What about the Internet today?
 - Connecting the Internet to the Cellular network
 - Connecting private network together (Intranets and Portal Servers)
 - Connecting other exotic networks to the Internet
 - Space Networks
 - SensorNets

Class Projects Suggestions
(Overlays)

- Weather Service
 - Use a network of nodes to predict network conditions (e.g. delay, bandwidth)
 - Issues: How many nodes do you need. How accurate can you get. How quickly can you track changes
 - Can be deployed on PlanetLab http://www.planet-lab.org/
Class Project Suggestions (Overlays)

- **Worm Detection, Traceback**
 - How do you detect a spreading worm?
 - Ingress scanning
 - Honeypots/Honeyfarms/Wormholes
 - What is the effectiveness of these techniques?
 - How can we combine these techniques?
 - Once detected, how do you trace-back to the worm's origin?

Class Project Suggestions (P2P)

- **P2P Worms**
 - CodeRed, Nimda propagate through (random) address scanning
 - But potentially we can have worms that spread over P2P networks
 - Communications seem to be normal
 - How do we detect and contain them?

Class Project Suggestions (BGP)

- **Use beacons to do BGP Tomography**
 - BGP Beacons periodically announce and withdraw certain address prefixes
 - Can we use these beacons to detect dynamic characteristics of the AS-Graph in the same way as we use packet probes to detect traffic-level characteristics of the Internet?

- **Root Cause Analysis**
 - Faults are the norm on the Internet. Every day routers and links fail
 - Result is that address prefixes change routes or become inaccessible
 - Can we use different views of the AS-graph to pinpoint the root cause of each problem?
Next Steps

- Pick a project
 - Either from the ones suggested or one you come up with

- Pick a partner

- Submit a one-page project proposal by 2/9
 - The problem you are solving
 - Plan of attack
 - Any special resources you may need