This assignment is due by the start of lecture on Wednesday, October 24.

1. (Sipser 5.14) Consider the problem of determining whether a Turing machine \(M \) on an input \(w \) ever attempts to move its head left when its head is on the left-most tape cell. Formulate this problem as a language and show that it is undecidable.

2. Let \(FIN = \{ \langle M \rangle \mid M \text{ accepts only a finite number of strings} \} \). Prove the following results about \(FIN \). (Hint: use mapping reducibility.)

 (a) \(FIN \) is not Turing-recognizable.

 (b) \(\overline{FIN} \) is not Turing-recognizable (i.e., \(FIN \) is not co-Turing-recognizable.)

3. Read the description of Rice's Theorem in problem 5.28. Does Rice's Theorem apply to \(FIN \)? Briefly explain why or why not.

4. (Sipser 5.23) Show that \(A \) is decidable if and only if \(A \leq_m 0^*1^* \).

5. (Sipser 6.1) Give an example in the spirit of the recursion theorem of a program in a real programming language (or a reasonable approximation thereof) that prints itself out.

6. **Bonus**: Consider the following Turing machine:

 \[
 M = "\text{On input } w,} \\
 \text{1. Obtain, by the recursion theorem, } \langle M \rangle. \\
 \text{2. Simulate } \langle M \rangle \text{ on } w. \\
 \text{3. If } \langle M \rangle \text{ accepts } w, \text{ reject.} \\
 \text{4. If } \langle M \rangle \text{ rejects } w, \text{ accept.}"
 \]

 Can such a machine exist? If so, what is its language? If not, why not? (What is the contradiction?)