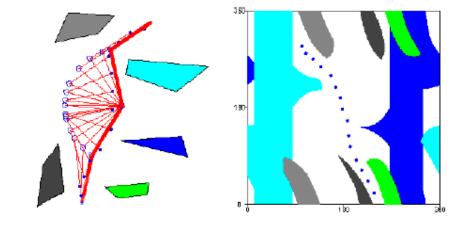
Review

- Rigid body motion
 - Position/Orientation
 - Linear/Angular velocities (spatial/body)
- Kinematics:
 - Forward: configuration space to SE(2)/SE(3)
 - Inverse: not really
 - Singularities
- Velocities:
 - Manipulator Jacobian (singularities)



Review

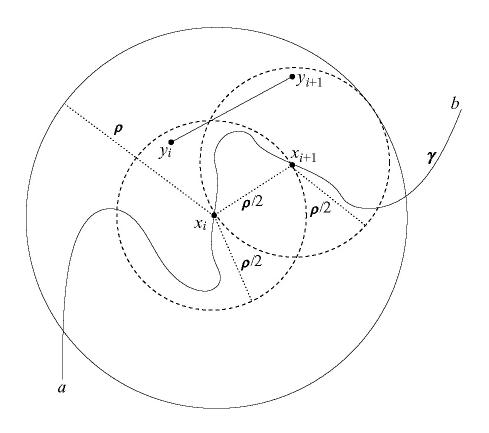
- Hand-Eye calibration
 - AX=XB is ubiquitous
 - How to formulate the problem and how to solve it
 - Difference between closed form (2 "A" and 2 "B")
 and least squares solutions (N "A" and N "B")
 - Not just for robots: "X" relates two coordinate frames

Potential Fields

- Configuration spaces
 - Robot arms
 - Revolute joints $q \in \mathbb{S}^1$
 - Prismatic joint $q \in \mathbb{R}^1$
 - Mobile robot
 - R², R³, SE(2), SE3(3), ...
- Workspace SE(2), SE(3)
- Potential Fields
 - Explicit Attractive/Repulsive potential functions
 - Gradient descent
 - Robot arms use implicit potential in the workspace and the Jacobian to relate workspace potential to configuration space potential

Roadmaps

- General idea:
 - Focus on finding paths on a small subset of the free space
- Efficient algorithms in 2D
 - Visibility graph
 - Connect vertices of polygons and use the edges as roads
 - Trapezoid cell decomposition
 - Decompose the free space in convex cells and make edges between midpoints of shared segments



Sampling-Based Algorithms

PRM

- Randomly sample configuration space
- Connect some or all pairs of configurations
- Use the roadmap to find a path between two configurations
- Many variants and "flavor-of-the-months"
 - Build and connect trees
 - Multiple query: Plain, obstacle sampling, Gaussian sampling, visibility sampling, bridge sampling, importance sampling
 - Single query: RRT, EST
- Completeness

$$\Pr[(a, b) \text{SUCCESS}] \ge 1 - \left\lceil \frac{2L}{\sigma} \right\rceil \bar{e}^{\sigma \rho^d n},$$