Hand-Eye Calibration

Simon Leonard

Department of Computer Science Johns Hopkins University

Coordinate Frames

- On robots

6 axes robot arm

Combining Sensors and Robots

"Eye-in-Hand"

"Eye-to-Hand"

Hand-Eye Calibration

- Find the transformation between the coordinate frame of the sensor and a coordinate frame on the robot
- With few exceptions, this transformation " X " must be known if measurements from the sensor are used to control the motion of the robot

Not Just for Robots

- Use for any sensor that is tracked by some device
- Navigation system tracks an endoscope in 3D and can "register" the position of the device to the patient's CT
- Endoscope images are in the camera coordinate frame
- Hand-eye calibration will relate the images of the endoscope to the patient's CT

$A X=X B$

1. Move to robot to position E_{1}
2. Measure the position of the sensor S_{1}
3. Move the robot to position E_{2}
4. Measure the position of the sensor S_{2}
E_{1} and E_{2} are given by the forward kinematics
S_{1} and S_{2} are given by
 measuring the position of the sensor wrt to the "world"

$A X=X B$

$$
\begin{aligned}
E_{1} X S_{1} & =E_{2} X S_{2} \\
X S_{1} S_{2}^{-1} & =E_{1}^{-1} E_{2} X \\
A X & =X B
\end{aligned}
$$

Where
$A=E_{1}^{-1} E_{2}$ is the relative motion of the robot $B=S_{1} S_{2}^{-1}$ is the relative motion of the sensor X is the transformation between the robot and the sensor

Solution to $A X=X B$

- There are dozens of ways to solve $A X=X B$
- Close form solution (quaternion, angle-axis, dual quaternion, etc.)
- Iterative (non-linear least-squares, convex optimization, etc.)
- Probabilistic methods

Park and Martin Method

- First solve for the rotation, then solve for the translation

$$
\left[\begin{array}{cc}
R_{A} & t_{A} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{X} & t_{X} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{X} & t_{X} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{B} & t_{B} \\
0 & 1
\end{array}\right]
$$

The strategy is

1) Solve for the rotation R_{x} (closed form)

$$
R_{A} R_{X}=R_{X} R_{B}
$$

2) Use the solution R_{X} to solve for t_{x} using least squares

$$
R_{A} t_{X}+t_{A}=R_{X} t_{B}+t_{X}
$$

Solving the Rotation

A rotation matrix can be represented by the matrix exponential

$$
R(\omega, \theta)=e^{\widehat{\omega} \theta}
$$

where ω is an axis of rotation and θ is a rotation angle

$$
\widehat{\log (R)}=\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right)
$$

with

$$
\theta=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right)
$$

Solving the Rotation

Given the axis-angle representation of each rotation

$$
\begin{array}{ll}
\alpha_{1}=\log \left(R_{A 1}\right) & \alpha_{2}=\log \left(R_{A 2}\right) \\
\beta_{1}=\log \left(R_{B 1}\right) & \beta_{2}=\log \left(R_{B 2}\right)
\end{array}
$$

we use the identity $\alpha_{i}=R_{X} \beta_{i}$ to build the system of equations

$$
\mathcal{A}=R_{X} \mathcal{B}
$$

where

$$
\begin{aligned}
\mathcal{A} & =\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{1} \times \alpha_{2}
\end{array}\right] \\
\mathcal{B} & =\left[\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{1} \times \beta_{2}
\end{array}\right]
\end{aligned}
$$

and we get

$$
R_{X}=\mathcal{A B} \mathcal{B}^{-1}
$$

Solving the Translation

$$
\begin{aligned}
& R_{A} t_{X}-t_{X}=R_{X} t_{B}-t_{A} \\
& \left(R_{A}-I\right) t_{X}=R_{X} t_{B}-t_{A}
\end{aligned}
$$

Using A_{1}, A_{2}, B_{1} and B_{2} we get

$$
\left[\begin{array}{l}
R_{A_{1}}-I \\
R_{A_{2}}-I
\end{array}\right] t_{X}=\left[\begin{array}{l}
R_{X} t_{B_{1}}-t_{A_{1}} \\
R_{X} t_{B_{2}}-t_{A_{2}}
\end{array}\right]
$$

which can be solved by using least squares

More Than Two Data Points

- If we have $A_{1}, \ldots, A_{N}, B_{1}, \ldots B_{N}$, then we want to R_{x} and t_{x} to "best fit the data"
- We start again by solving for the rotation
- Using a polar decomposition we have

$$
R_{X}=\left(M^{T} M\right)^{-1 / 2} M^{T}
$$

where

$$
M=\sum_{i=1}^{N} \beta_{i} \alpha_{i}^{T}
$$

More Than Two Data Points

Note that $\left(M^{T} M\right)^{-1 / 2}$ can be computed by observing that $M^{T} M$ is symmetric positive definite and as such it has the diagonal factorization

$$
M^{T} M=Q \Lambda Q^{-1}
$$

and

$$
\begin{aligned}
& \left(M^{T} M\right)^{-1 / 2}=Q \Lambda^{-1 / 2} Q^{-1} \\
& =Q\left[\begin{array}{ccc}
\frac{1}{\sqrt{\lambda_{1}}} & 0 & 0 \\
0 & \frac{1}{\sqrt{\lambda_{2}}} & 0 \\
0 & 0 & \frac{1}{\sqrt{\lambda_{3}}}
\end{array}\right]
\end{aligned}
$$

More Than Two Data Points

- Once R_{x} is found, we solve for t_{x} using least squares

$$
\left[\begin{array}{c}
I-R_{A_{1}} \\
\vdots \\
I-R_{A_{N}}
\end{array}\right] t_{X}=\left[\begin{array}{c}
t_{A_{1}}-R_{X} t_{B_{1}} \\
\vdots \\
t_{A_{N}}-R_{X} t_{B_{N}}
\end{array}\right]
$$

