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Robot Manipulators
● A robot manipulator is typically 

moved through its joints

● Revolute: rotate about an axis

● Prismatic: translate along an axis

SCARA 6 axes robot arm

But we often prefer 
using Cartesian 
frames to program 
motions
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Kinematics
Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BRT, BtT ]
BRT :Orientation of T wrt B

BtT : Position of  T wrt B

Joint Space

Joint 1 = q1
Joint 2 = q2

...
Joint N = qN

FORWARD
KINEMATICS

INVERSE
KINEMATICS

[BRT, BtT] = f(q)

q = f -1( [BRT, BtT]  )

Rigid body motion
Transformation between

coordinate frames

Linear algebra
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Transformation Within Joint Space
Joint spaces are defined in ℝ𝑁𝑁

Thus for a vector of joint values

we can add/subtract joint values

How many joints do you need? It 
depends on the task. But ISO 8373 
requires all industrial robots to have 
at least three or more axes.

qA

qC

qB𝒒𝒒 =
𝑞𝑞1
⋮
𝑞𝑞𝑁𝑁

𝒒𝒒𝑐𝑐 = 𝒒𝒒𝐴𝐴+𝒒𝒒𝐵𝐵
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Kinematics

Joint Space

Joint 1 = q1
Joint 2 = q2

...
Joint N = qN

FORWARD
KINEMATICS

INVERSE
KINEMATICS

[BRT, BtT] = f(q)

q = f -1( [BRT, BtT]  )

Rigid body motion
Transformation between

coordinate frames

Linear algebra

Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BRT, BtT ]
BRT :Orientation of T wrt B

BtT : Position of  T wrt B
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2D Rigid Motion
● Combine position and orientation:

● Special Euclidean Group: SE(2)

SE 2 = 𝒕𝒕, R : 𝒕𝒕 ∈ ℝ2, R ∈ SO 2 = ℝ2 × SO(2)

Bx

Ay

By
Bx
θ

AtB

AtB ∈ ℝ2 is the translation between A and B

ARB ∈ SO 2 is the rotation between A and B

If R ∈ SO 2 , then R ∈ ℝ2×2, R RT = I  and 
det(R) = 1

ARB=
cos(𝜃𝜃) −sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃)

Special Orthogonal (SO)
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3D Rigid Motion
● Combine position and orientation:

● Special Euclidean Group: SE(3)

SE 3 = 𝒕𝒕, R : 𝒕𝒕 ∈ ℝ3, R ∈ SO 3 = ℝ3 × SO(3)
AtB ∈ ℝ3 is the translation between A and B

ARB ∈ SO 3 is the rotation between A and B

If R ∈ SO 3 , then R ∈ ℝ3×3, R RT = I  and 
det(R) = 1

ARB=
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

AtB
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3D Rotations

ARB =
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

𝑅𝑅𝑥𝑥 𝜙𝜙 =
1 0 0
0 cos(𝜙𝜙) −sin(𝜙𝜙)
0 sin(𝜙𝜙) cos(𝜙𝜙)

𝑅𝑅𝑦𝑦 𝛽𝛽 =
cos(𝛽𝛽) 0 sin(𝛽𝛽)

0 1 0
−sin(𝛽𝛽) 0 cos(𝛽𝛽)

𝑅𝑅𝑧𝑧 𝛼𝛼 =
cos(𝛼𝛼) −sin(𝛼𝛼) 0
sin(𝛼𝛼) cos(𝛼𝛼) 0

0 0 1

Be careful of
Commutations
R = Rx Ry Rz ≠ Rz Ry Rx

Can be factorized into
a product of elementary
rotations
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3D Rotations

• Lots of different ways to represent 3D rotations:
– Quaternion, Euler angles, axis/angle, Rodrigues
– They all have strengths (i.e. less than 9 numbers) and 

weaknesses (i.e. singularities)
• “It is a fundamental topological fact that singularities can 

never be eliminated in any 3-dimensional representation of 
SO(3).” A Math. Introduction to Robotic Manipulation

– They represent a different way to represent the SAME 
concept:

A 3x3 matrix R such that 
(RT) R = R (RT) = I 

det( RT ) = +1
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Homogeneous Representation
• A 2D point is represented by appending a “1” to yield 

a vector in R3 P=[ x y 1 ]T

• A 3D point is represented by appending a “1” to yield 
a vector in R4 P=[ x y z 1 ]T

• They are called homogenous coordinates
• The affine transformation of a point

is represented by a linear transformation using a 
homogeneous coordinates

AP = ARB
BP + AtB

AP
1 = 

ARB
AtB

0 1
BP
1
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Homogeneous Representation

AP = ARB
BP + AtB

BP = BRC
CP + BtC

AP = ARB (BRC
CP + BtC)+ AtBThis is annoying 

AP
1 =

ARB
AtB

0 1
BP
1 = AEB

BP
1

BP
1 =

BRC
BtC

0 1
CP
1 = BEC

CP
1

AP = AEB
BEC

CP
1

AP = AEC

CP
1

This is convenient

Affine transformations

Linear transformations
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Kinematics
Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BRT, BtT ]
BRT :Orientation of T wrt B

BtT : Position of  T wrt B

Joint Space

Joint 1 = q1
Joint 2 = q2

...
Joint N = qN

FORWARD
KINEMATICS

INVERSE
KINEMATICS

[BRT, BtT] = f(q)

q = f -1( [BRT, BtT]  )

Rigid body motion
Transformation between

coordinate frames

Linear algebra 
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Cartesian Transformation
Kinematic Chain
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Forward Kinematics
Guidelines for assigning frames to robot links:
• There are several conventions

– Denavit Hartenberg (DH), modified DH, Hayati, etc.
– They are “conventions” not “laws”
– Mainly used for legacy reason (when using 4 

numbers instead of 6 per link made a 
difference).

1) Choose the base and tool coordinate frame
– Make your life easy!

2) Start from the base and move towards the tool
– Make your life easy!
– In general each actuator has a coordinate frame.

3) Align each coordinate frame with a joint actuator
– Traditionally it’s the “Z” axis but this is not

necessary and any axis can be use to represent the 
motion of a joint Barrett WAM
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Rigid Body Motion 2D

• We have the 
coordinates of a point P 
in the coordinate frame 
“C”

• Given the following 
robot, what are the 
coordinates of P in the 
coordinate frame “A”?

Bx

Ay

By Bx

Cp

q1
AtB

q2
BtC

Cy

Cx
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Forward Kinematics 2D

• First, what is the position and 
orientation of coordinate frame 
“B” with respect to coordinate 
frame “A”?
– The position of B with respect to 

A is constant
– The orientation of B with respect 

to A depends on the angle q1

Bx

Ay

By Bx
q1

AtB

ARB=
cos(𝑞𝑞1) −sin(𝑞𝑞1)
sin(𝑞𝑞1) cos(𝑞𝑞1)

AtB
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Forward Kinematics 2D

• Second, what is the position 
and orientation of coordinate 
frame “C” with respect to 
coordinate frame “B”?
– The position of C with respect to 

B is constant
– The orientation of C with respect 

to B depends on the angle q2

By Bx

q2
BtC

Cy

Cx

BRC=
cos(𝑞𝑞2) −sin(𝑞𝑞2)
sin(𝑞𝑞2) cos(𝑞𝑞2)

BtC
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Forward Kinematics 2D

Bx

Ay

By Bx

Cp

q1
AtB

q2
BtC

Cy

Cx

BEC=
𝐵𝐵𝑅𝑅𝐶𝐶 𝐵𝐵𝒕𝒕𝐶𝐶

0 1
BP = BEC

CP

AEB=
𝐴𝐴𝑅𝑅𝐵𝐵 𝐴𝐴𝒕𝒕𝐵𝐵

0 1
AP = AEB

BP

AP = AEB
BEC

CP =  AEC
CP

AEC=
𝐴𝐴𝑅𝑅𝐶𝐶 𝐴𝐴𝒕𝒕𝐵𝐵

0 1
AP = AEC

CP

Forward kinematics
ARC and AtB are functions
of q1 and q2
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Forward Kinematics 3D

x

y

z

q1

y

x

z

AtB

q2

y

z

x

BtC
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Kinematics
Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BRT, BtT ]
BRT :Orientation of T wrt B

BtT : Position of  T wrt B

Joint Space

Joint 1 = q1
Joint 2 = q2

...
Joint N = qN

FORWARD
KINEMATICS

INVERSE
KINEMATICS

[BRT, BtT] = f(q)

q = f -1( [BRT, BtT]  )

Rigid body motion
Transformation between

coordinate frames

Linear algebra
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Inverse Kinematics 2D

x

y

y x

q
t Given ARB and AtB find q

q only appears in ARB so solving R 
for q is pretty easy. With several 
joints, the inverse kinematics gets 
very messy.















 −
=

100
07071.07071.0
07071.07071.0

)(φB
AR q = 45 degrees

𝐴𝐴𝐸𝐸𝐵𝐵(𝑞𝑞)
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Inverse Kinematics 3D

x

y

z

q1

y

x

z

AtB

q2

y

z

x

BtC

Likewise, in 3D we want to solve for the 
position and orientation of the last coordinate 
frame: Find q1 and q2 such that

Solving the inverse kinematics gets messy 
fast!
A) For a robot with several joints, a symbolic 

solution can be difficult to get
B) A numerical solution (Newton’s method) is 

more generic
Note that the inverse kinematics is NOT 
the inverse of the forward kinematics ( )1−

B
AE
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Kinematics

Joint Space

Joint 1 = q̇1
Joint 2 = q̇2

...
Joint N = q̇N

JACOBIAN

INVERSE
JACOBIAN

[ v, w ]T = J(q) q̇

q̇ = J-1(q) [ v, w ]T

Rigid body motion
Transformation between

coordinate frames

Linear algebra

Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BvT, BwT ]
BvT :linear vel. of T wrt B

BwT : angular vel. of  T wrt B
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Rigid Body Transformation
Relates two coordinate frames

Rigid Body Velocity
Relate a 3D velocity in one coordinate
frame to an equivalent velocity in another
coordinate frame
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Rotational Velocity

We note that a rotation relates the 
coordinates of 3D points with

Deriving on both sides with respect 
to time we get

ptRtp B
B

AA )()( =

pR
dt

tpdtv B
B

A
A

pA
==

)()(

pRRRtv B
B

A
B

A
B

A
pA )()( 1−= 

pRRtv A
B

A
B

A
pA )()( 1−= 

Identity

This skew symmetric matrix defines
the spatial angular velocity

A

B

• Point P is attached 
to frame B

• Frame B moves wrt
to frame A

• Frame A is inertial
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Rotational Velocity

















−
−

−
=

0
0

0
ˆ

xy

xz

yz

aa
aa

aa
a1−

b
A

B
A RR is skew symmetric 

The instantaneous spatial angular velocity is 
defined by 

1

0
0

0
ˆ −=

















−
−

−
= B

A
B

A

xy

xz

yz

B
A RR

ωω
ωω
ωω

ω 𝐴𝐴𝜔𝜔𝐵𝐵 =
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
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Rotational Velocity

















−
−

−
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0
0

0
ˆ

xy

xz

yz

aa
aa

aa
a1−

b
A

B
A RR is skew symmetric 

The instantaneous spatial angular velocity is 
defined by 

1

0
0

0
ˆ −=

















−
−

−
= B

A
B

A

xy

xz

yz

B
A RR

ωω
ωω
ωω

ω 𝐴𝐴𝜔𝜔𝐵𝐵 =
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
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Rigid Body Velocity








 +−
=







 −








=−

001000
1 B

A
B

AT
B

A
B

AT
B

A
B

A
B

AT
B

AT
B

A
B

A
B

A

B
A

B
A ttRRRRtRRtR

EE




We note that a rotation relates the coordinates of 3D points 
with

Just like we did for rotations, deriving on both sides with 
respect to time we get

and we expand the matrices to be

ptEp
tttR

tp B
B

ABB
A

B
A

A )(
10

)()(
)( =








=

pEEtv A
B

A
B

A
pA )()( 1−= 

angular
velocity

linear
velocity
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Rigid Body Velocity

The “s”patial velocity is defined by
1ˆ −= B

A
B

As
B

A EEV 

Where the linear velocity is defined by

B
A

B
AT

B
A

B
As

B
A ttRRv  +=−

T
B

A
B

As
B

A RR=ω̂

And the angular velocity is define as before by

Combining these two we obtain the 6D vector









= S

B
A

S
B

A
s

B
A v
V

ω
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Body Velocity

• If we have AEB(t) but we want to know the 
velocity of frame B with respect to frame B?

( ) pEEtv

pEEtvE
B

B
A

B
A

p

B
B

A
B

A
pB

A

B

A





1

11

)(

)(
−

−−

=

=
ptEtp B

B
AA )()( =

A

B
Most intuitive: This is your velocity
with respect to yourself

)(tEB
A
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Body Velocity

The “b”ody velocity is defined by









== −

00
ˆ 1 B

AT
B

A
B

AT
B

A

B
A

B
Ab

B
A tRRR

EEV




Where the linear velocity is defined by

B
AT

B
Ab

B
A tRv =

B
AT

B
Ab

B
A RR =ω̂

And the angular velocity is define as before by

Combining these two we obtain the 6D vector









= b

B
A

b
B

A
b

B
A v
V

ω
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Transform Body Velocity to Spatial 
Velocity

















=








b
B

A

b
B

A

B
A

B
A

B
A

B
A

s
B

A

s
B

A v
R

RtRv
ωω 0

ˆ

“b”ody

“s”patial

If you are given a body velocity, for example say you 
want to:

1) Rotate the tool about a given axis (in the 
tool frame)

2) Drive the tool along a given axis (in the tool 
frame)

Then you can compute the equivalent velocity in the 
base frame according to 
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Rigid body motion
Transformation between

coordinate frames

Linear algebra

Kinematics
JACOBIAN

INVERSE
JACOBIAN

[ v, w ]T = J(q) q̇

q̇ = J-1(q) [ v, w ]T

Cartesian Space
Velocity

[ v, w ]

v: linear velocity
w: angular velocity

Joint Space
Velocity

Joint 1 = q̇1
Joint 2 = q̇2

...
Joint N = q̇N
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( ) ( )( )tEqV T
B

N

i
iq

Es
T

B
i

T
B

q1

1

−

=
∂
∂∑= 

Manipulator Jacobian
Spatial velocity of the “T”ool frame in the “B”ase frame is

Let’s change the time varying trajectory BET(t) to be a  time 
varying joint trajectory q(t)

Applying the chain rule

Derivative of the
forward kinematics
wrt qi

Inverse of the
forward kinematics

)()(ˆ 1 tEtEV T
B

T
Bs

T
B −= 

( )( ) ( )( )tEtEV T
B

T
Bs

T
B qq 1ˆ −= 

( )( )( ) i

N

i
T

B
q
Es

T
B qtEV

i

T
B

∑
=

−
∂
∂=

1

1 q
𝜕𝜕𝐸𝐸 𝑞𝑞 𝑡𝑡

𝜕𝜕𝑡𝑡
=
𝜕𝜕𝐸𝐸 𝑞𝑞 𝑡𝑡

𝜕𝜕𝑞𝑞
𝜕𝜕𝑞𝑞 𝑡𝑡
𝜕𝜕𝑡𝑡

^

^
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Manipulator Jacobian

Lets rewrite this result as

Where J(q) is a 6xN matrix called the manipulator Jacobian that 
relates joint velocities to the Cartesian velocity of the tool.
Note that J(q) depends on “q” and, therefore, on the robot’s 
configuration

qq )(J
v

s
T

B

s
T

B

=








ω

( )( )( ) i

N

i
T

B
q
Es

T
B qtEV

i

T
B

∑
=

−
∂
∂=

1

1 q Sum the contribution of 
each joint to the tool’s 
velocity

�̇�𝑞1

�̇�𝑞2

v

^
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Rigid body motion
Transformation between

coordinate frames

Linear algebra

Kinematics
JACOBIAN

INVERSE
JACOBIAN

[ v, w ]T = J(q) q̇

q̇ = J-1(q) [ v, w ]T

Cartesian Space
Tool Frame (T)
Base Frame (B)

[ BvT, BwT ]
BvT :linear vel. of T wrt B

BwT : angular vel. of  T wrt B

Joint Space

Joint 1 = q̇1
Joint 2 = q̇2

...
Joint N = q̇N
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Manipulator Jacobian

We just derived that given a vector of joint velocities, the 
velocity of the tool as seen in the base of the robot is given by 

If, instead we want the tool to move with a velocity expressed 
in the base frame, the corresponding joint velocities can be 
computed by

Inverting a matrix is much easier than computing the inverse 
kinematics!

( )qq J
v

s
T

B

s
T

B

=








ω

( ) 







= −

s
T

B

s
T

Bv
J

ω
qq 1
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Manipulator Jacobian
What if the Jacobian has no inverse?

A) No solution: The velocity is impossible
B) Infinity of solutions: Some joints can be moved without affecting 
the velocity (i.e. when two axes are colinnear)

v

A)

The robot cannot move 
in this direction when the
robot is in this configuration.

Hence J(q) is singular.

In this 
configuration,
q1 and q3 can 
counter rotate. 
Hence J(q) is 
singular.

B)

q1 q2

q3

q1̇ = -q3̇
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