
Algorithms for Sensor-Based Robotics: 

Kalman Filters for Mapping and 

Localization 
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with slides from G.D. 

Hager and Z. Dodds 

Sensors! 

Robots’ link to the external world 

(obsession with depth) 

Sensors, sensors, sensors! 

and tracking what is sensed: world models 

IR rangefinder 
sonar rangefinder 

Light-field camera 

Kinect 
Laser 
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Sensors! 

Robots’ link to the external world... 

Sensors, sensors, sensors! 

and tracking what is sensed: world models 

Force/

Torque Inertial 

measurement unit 

(gyro +  

accelerometer) 

gyro 

compass 

GPS 
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Hager and Z. Dodds 

Infrared sensors 

“Noncontact bump sensor” 

IR emitter/detector pair 

IR detector 

(1) sensing is based on light intensity. 

diffuse distance-sensing IR 

“object-sensing” IR 

looks for changes 

at this distance 

(2) sensing is based 

on angle receved. 
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with slides from G.D. 

Hager and Z. Dodds 

Infrared calibration 

in the dark 

The response to white copy paper 

(a dull, reflective surface) 

inches 

15º increments 

raw values            

(put into 4 bits) 

fluorescent light incandescent light 
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with slides from G.D. 

Hager and Z. Dodds 

Infrared calibration 

energy vs. distance for various materials 

( the incident angle is 0º, or head-on ) 

( with no ambient light ) 
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Hager and Z. Dodds 

Sonar sensing 

No lower range limit for paired sonars...  

Polaroid sonar emitter/receivers  

single-transducer sonar timeline 

0 

a “chirp” is emitted 

into the environment 

75ms 

typically when 

reverberations 

from the initial 

chirp have stopped 

.5s 
the transducer goes into 

“receiving” mode and 

awaits a signal... 

limiting range sensing 

after a short time, the 

signal will be too weak 

to be detected  

time response 

blanking time 
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with slides from G.D. 

Hager and Z. Dodds 

Sonar effects 

resolution: time / space 

(d)   Specular reflections 

cause walls to disappear 

(e)   Open corners produce a 

weak spherical wavefront 

(f)   Closed corners measure to the 

corner itself because of multiple 

reflections --> sonar ray tracing  

(a)   Sonar providing an 

accurate range measurement   

(b-c)   Lateral resolution is not very 

precise; the closest object in the 

beam’s cone provides the response   
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with slides from G.D. 
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Sonar modeling 

initial time response 

spatial response 

blanking time 

accumulated 

responses 

cone width 
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Laser Ranging 

LIDAR/Laser range finder 

LIDAR map 
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(w/slides from Z. 

Dodds) 

Recent, Cool... 

The 3d “time-of-flight” camera 

(1) “RF-modulated optical 
radiation field output” 

(2) Reflects off 
the environment (3) Time-interval input 

measurements provides data 
(not time-integrated!) 

http://www.csem.ch /detailed/p_531_3d_cam.htm 

 How can we get an image 

from this information? 
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More recent, Cooler... 

Structured light: 

Project a known dot 

pattern with an IR 

transmitter (invisible to 

humans) 

Infer depth from deformation to that pattern 

depth from focus: Points far away are blurry 

depth from stereo: Closer points are shifted 
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The Latest, Coolest... 

Light field camera (passive) 

ieee.org 

“Capture” the light going in 

every direction at every 3D point   

http://excelmathmike.blogspot.com 



The Problem 

• Mapping: What is the world around me (geometry, landmarks) 

– sense from various positions 

– integrate measurements to produce map 

– assumes perfect knowledge of position 

• Localization: Where am I in the world (position wrt landmarks) 

– sense 

– relate sensor readings to a world model 

– compute location relative to model 

– assumes a perfect world model 

• Together, these are SLAM (Simultaneous Localization and 

Mapping) 

– How can you localize without a map? 

– How can you map without localization? 

• All localization, mapping or SLAM methods are based on 

updating a state: 

– What makes a state? Localization? Map? Both? 

– How certain is the state? 



Representations for Bayesian Robot 

Localization 

Discrete approaches (’95) 
• Topological representation (’95) 

• uncertainty handling (POMDPs) 

• occas. global localization, recovery 

• Grid-based, metric representation (’96) 

• global localization, recovery 

Multi-hypothesis (’00) 
• multiple Kalman filters 

• global localization, recovery 

Particle filters (’99) 
• sample-based representation 

• global localization, recovery 

Kalman filters (late-80s?) 
• Gaussians 

• approximately linear models 

• position tracking 

AI 

Robotics 



Background 

Gaussian (or Normal) Distribution 
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Properties of Gaussians 

 

• We stay in the “Gaussian world” as long as we start with 

Gaussians and perform only linear transformations. 

 

• Same holds for multivariate Gaussians 

X1 ~ N(m1,s1

2 )

X2 ~ N(m2 ,s 2

2 )
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Kalman Filter 

• Seminal paper published in 1960  

• Great web page at http://www.cs.unc.edu/~welch/kalman/ 

• Recursive solution for discrete linear filtering problems 

– A state x  Rn 

– A measurement z  Rm 

– Discrete (i.e. for time t = 1, 2, 3, … )  

– Recursive (i.e. xt = f ( xt-1 ) ) 

– Linear system (i.e xt = A xt-1 ) 

• The problem is defined by a linear process model 

xt = A xt-1 + B ut-1 + wt-1 

 

 

 

 and a measurement linear model (with white Gaussian noise) 

zt = H xt + vt 

 

 

control 

Input 

(optional) 

Gaussian 

white 

noise 

state 

transition 

Gaussian 

white 

noise 

observation 

model 



Initial 

Prediction 

Correction 

Prediction 

16-735,  Howie Choset  

),ˆ( ttxN s

QAA

BuxAx

tt

ttt









ss 1

1
ˆˆ

111

11111

)1(

)ˆ(ˆˆ









ttt

ttttt

HK

xHzKxx

ss

QAA

BuxAx

tt

ttt









12

112
ˆˆ

ss



Example 

• If we are given all the 

ingredients: xt-1, zt, A, H wt-1, vt-1 

(and B and ut-1) what is the 

“optimal” xt ? 

 

xt = A xt-1 + B ut-1 + wt-1 

zt = H xt + vt 

With  

wt-1  N( 0, Q ) 

vt  N ( 0, R ) 

What if  

• Q is tiny and R is large? 

• R is large and Q is tiny? 

• Q and R are large? 

• Q and R are tiny? 

 

 

x 

wt-1 

vt 



Kalman Filter 

• A priori estimate      (prediction using process model) at step t  

• A posteriori estimate      (correction using measurement model ) 

at step t 

 

 Compute a posteriori estimate as a linear combination of an a 

priori estimate and difference between the actual measurement 

and expected measurement 

  

What is K? 

 Gain or “ blending factor” that adds a measurement innovation  
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Kalman Filter 

Define a priori error between true state and a priori estimate 

 

and its covariance as 

 

Define a posteriori error between true state and posterior estimate 

 

and its covariance as 

 

Then K that minimizes the a posteriori covariance is defined by 

 

Note that 

– If R → 0 then Kt = H 
-1
 (increase residual weight) 

 

– If Σt → 0 then Kt = 0 (decrease residual weight) 

residual 
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Kalman Filter 

• Recipe: 

– Given 

 

– Time update 

 

 

  

– Measurement update 

 

  

Time update 

(predict) 

Measurement 

update 

(correct) 
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Some Examples 

• Point moving on the line according to f = m a 

– state is position and velocity 

– input is force 

– sensing is position 

• Point in the plane under Newtonian laws 

• Non-holonomic kinematic system (no dynamics) 

– state is workspace configuration 

– input is velocity command 

– sensing could be direction and/or distance to beacons 

• All dynamic systems are “open-loop” integration 

– Force → acceleration → velocity → position  

• Role of sensing is to “close the loop” and pin down 
state 

 



Initial 

Prediction 

Correction 

Prediction 
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  Fully Observable     vs   Partially Observable 

16-735,  Howie Choset  



A concrete example 

Process Model 

Observation Model 



Kalman Filter for Dead Reckoning 

• Robot moves along a straight line with state x = [ p, v ]T 

 p: position 

 v: velocity 

• u is the input force applied to the robot 

 

Newton’s 2nd law                   first order finite difference: 

 

 

 

 

 

• Robot has velocity sensor 

Integrate 

acceleration 

Integrate 

velocity 

The robot position is not measured 

The measured velocity depends 

on the robot velocity (duh!) 



Example 

• Let plug some numbers 

m = 1 

Dt = 0.1 

 

 

 

 

Start at rest from the 

current position 

 
Uh oh! 

Matrix is singular. 

The reason is that an 

infinite number of states 

can generate the same 

observation 

prediction at t =1 

prediction covariance at t =1 



Observability 

• If H does not provide a one-to-one mapping 

between the state and the measurement, then the 

system is unobservable 

 

 

 

 In this case H is singular, such that many states 

can generate the same observation 



 

 

 

 

 

 

 Linearize it! 

 

Kalman Filter Limitations 

• Assumptions: 

– Linear state dynamics 

– Observations linear in state 

– White Gaussian noise 

• What can we do if system is not linear? 

– Non-linear state dynamics 

– Non-linear observations 



Extended Kalman Filter 

• Where A, H, W and V are Jacobians defined by 

  
 

  
 

1 

1 

1 

1 

1 

1 

1 

1 



Extended Kalman Filter 

• Kalman Filter Recipe: 

– Given   

 

– Prediction 

 

 

  

– Measurement correction 

 

  

• Extended Kalman Filter Recipe: 

– Given   

 

– Prediction 

 

 

  

– Measurement correction 

 

  



EKF for Range-Bearing Localization 

• State                   position and orientation 

 

• Input                     forward and rotational velocity 

• Process model  

 

 

• Given a map, the robot sees N landmarks with 

coordinates 

Se 2005 



Linearize Process Model 

1 



Linearize Observation Model 

1 

1 



Data Association 

• From observation model, we have an 

expected 

 

 

 

 

 

• So if we have N landmarks l1, …, lN and 

we are given a scan zt, how do associate 

each landmark to a scan observation? 

• Given an observed landmark, we can do 

– Nearest neighbor 

– Mahalanobis distance 

– Probabilistic Data Association Filter 

(PDAF) 
 

Pick the best landmark or, if it is too “different” create a new landmark lN+1 

Xiaolei Hou 



From Localization to Mapping 

• For us, the landmarks have been a known 

quantity (we have a map with the 

coordinates of the landmarks), but landmarks 

are not part of the state 

 

• Two choices: 

– Make the state the location of the landmarks 

relative to the robot (I also know exactly 

where I am …) 

• - No notion of location relative to past history 

• - No fixed reference for landmarks 

 

– Make the state the robot location now (relative 

to where we started) plus landmark locations 

• + Landmarks now have fixed location 

• -  Knowledge of my location slowly degrades 

(but this is inevitable …) 



Kalman Filters and SLAM 
• Localization: state is the location of the robot 

 

• Mapping: state is the location of 2D landmarks 

 

• SLAM: state combines both 

 

• If the state is  

 then we can write a linear observation system 

– note that if we don’t have some fixed landmarks, our system is unobservable 
(we can’t fully determine all unknown quantities) 

• Covariance  is represented by 
http://ais.informatik.uni-freiburg.de 



• State                                                        position and orientation 

and landmarks 

 

• Input                     forward and rotational velocity 

 

• The process model for localization is 

 

 

 

 This model is augmented for 2N+3 dimensions to 

accommodate landmarks. This results in the process equation 

Step 1: EKF Range Bearing SLAM 

State Update 
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Step 2: EKF Range Bearing SLAM 

Covariance Update 
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Jacobian of the 

robot motion 

The motion of the robot does not 

affect the coordinates of 

the landmarks 

Step 1b: Update the covariance matrix. The function f(s,u,w) 

only affects the robot’s location and not the landmarks 

Jacobian of the  

process model 

2Nx2N identity 



Step 3: EKF Range Bearing SLAM 

Correction Gain 

Compute the Jacobian Hi of each hi and then 

stack them into one big matrix H. Note that hi 

only depends on 5 variables: xt, yt, t, xli, yli 

Need to be in the  

correct columns 

of H 



Step 4: EKF Range Bearing SLAM 

Measurement 

• Observe N landmarks  

• Must have data association 

Which measured landmark corresponds to hi? 

If st contains the coordinates of N landmarks in the map, hi predicts the 

measurement of each landmark 

Must figure which measured landmark corresponds to hi. 

– Nearest neighbor 

– Probabilistic Data Association Filter (PDAF) 

– If using visual landmarks use visual descriptors to match landmarks 

If the measurement does not correspond to any predicted observation, 

then initialize and add the landmark to the map 
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• From K and H update the posterior state estimate 

 

 

 

 

      Tada! And we are done! 

Step 5: EKF Range Bearing SLAM 

Correction Update 



Lets assume one landmark for now 
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Bearing-Only SLAM 

Often use omni-directional sensor 

www-robotics.usc.edu 

Tully 2008 



• We cannot estimate the landmark 

location with one measurement 

 

• We must guess the range and 

initialize with a large covariance 

due to the lack of range information 

 

• The location is very uncertain and 

difficult to resolve with low parallax 

measurements 

 

• The measurement model is very 

nonlinear, which breaks 

conventional filtering techniques 

Why Bearing-Only SLAM is Challenging 

Tully 2008 



• EKF uses the standard Kalman 

update 

 

• The Kalman gain is computed 

through a linearization about the 

current estimate 

 

• The result diverges 

 

• Very dependent on the 

initialization “guess” of 

landmarks 

Bearing-Only SLAM with EKF 

http://www.pracsyslab.org 



Mono SLAM 

• A visual landmark 

with a single camera 

does not provide 

range 

• Data association is 

given by tracking or 

matching visual 

descriptors/patches 

Robot Vision, Imperial College 

http://homepages.inf.ed.ac.uk/ 



Experimental Results – The Victoria Park Dataset 

• A well studied benchmark dataset used in many other 

SLAM publications 

 

• We simply ignored all of the range values provided 

with each landmark measurement 



Navigation: RMS Titanic 
Leonard & Eustice 

EKF-based system 

866 images 

3494 camera constraints 

Path length 3.1km 2D / 3.4km 3D 

Convex hull > 3100m2 

344 min. data / 39 min. ESDF* 

*excludes image registration time 



Search of Flight 370  



Summary 

• Basic system modeling ideas 

 

• Kalman filter as an estimation method from a system model 

 

• Linearization as a way of attacking a wider variety of problems 

 

• Mapping localization and mapping into EKF 

 

• Extensions for managing landmark matching and not-well-

constrained systems. 


