Algorithms for Sensor-Based Robotics: Kalman Filters for Mapping and Localization

Sensors!

(obsession with depth)

Robots' link to the external world

Sensors, sensors, sensors! and tracking what is sensed: world models

Kinect

IR rangefinder

sonar rangefinder

Light-field camera

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Sensors!

Robots' link to the external world...

Sensors, sensors, sensors! and tracking what is sensed: world models

GPS

Mp

gyro

Force/ Torque

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Inertial measurement unit (gyro + accelerometer)

compass

Infrared sensors

"Noncontact bump sensor"

IR emitter/detector pair

16-735, Howie Choset with slides from G.D. IR detector Hager and Z. Dodds

(1) sensing is based on light intensity.

Infrared calibration

The response to white copy paper (a dull, reflective surface)

with slides from G.D.

.

Infrared calibration

energy vs. distance for various materials (the incident angle is 0°, or head-on) (with no ambient light)

16-735, Howie Choset with slides from G.D.

Sonar sensing

single-transducer sonar timeline

a "chirp" is emitted into the environment

()

typically when reverberations from the initial chirp have stopped

75µs

the transducer goes into "receiving" mode and awaits a signal...

limiting range sensing

after a short time, the signal will be too weak to be detected

.5s

Polaroid sonar emitter/receivers No lower range limit for *paired* sonars...

16-735, Howie Choset with slides from G.D.

Sonar effects

(a) Sonar providing an accurate range measurement

(b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response

(d) Specular reflections cause walls to disappear

(e) Open corners produce a weak spherical wavefront

(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

resolution: time / space

Sonar modeling

Laser Ranging

LIDAR/Laser range finder

LIDAR map

4/12/2015

http://www.csem.ch /detailed/p_531_3d_cam.htm

(w/slides from Z.

More recent, Cooler...

Structured light: Project a known dot pattern with an IR transmitter (invisible to humans)

Infer depth from deformation to that pattern depth from focus: Points far away are blurry depth from stereo: Closer points are shifted

4/12/2015

The Latest, Coolest...

Light field camera (passive)

"Capture" the light going in every direction at every 3D point

Digital or Optical Camera

The Problem

- Mapping: What is the world around me (geometry, landmarks)
 - sense from various positions
 - integrate measurements to produce map
 - assumes perfect knowledge of position
- Localization: Where am I in the world (position wrt landmarks)
 - sense
 - relate sensor readings to a world model
 - compute location relative to model
 - assumes a perfect world model
- Together, these are SLAM (Simultaneous Localization and Mapping)
 - How can you localize without a map?
 - How can you map without localization?
- All localization, mapping or SLAM methods are based on updating a state:
 - What makes a state? Localization? Map? Both?
 - How certain is the state?

Representations for Bayesian Robot Localization

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Kalman filters (late-80s?)

- Gaussians
- approximately linear models
- position tracking

Robotics

Particle filters ('99)

- sample-based representation
- global localization, recovery

AI

Multi-hypothesis ('00)

- multiple Kalman filters
- global localization, recovery

Background Gaussian (or Normal) Distribution

$$p(x) \sim N(m, S^2)$$
:
 $p(x) = \frac{1}{\sqrt{2pS}} e^{-\frac{1(x-m)}{2S^2}}$

Univariate

 $p(\mathbf{x}) \sim N(u, \bot)$:

$$p(\mathbf{x}) = \frac{1}{(2\rho)^{d/2} |\mathsf{L}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-u)^t \mathsf{L}^{-1}(\mathbf{x}-u)}$$

Multivariate

Properties of Gaussians

$$\begin{array}{ccc} X \sim N(m, S^2) \ddot{\mathbf{U}} \\ Y = aX + b & \dot{\mathbf{p}} \end{array} \quad \stackrel{\text{(b)}}{\vdash} \quad Y \sim N(aM + b, a^2 S^2) \end{array}$$

$$X_{1} \sim N(m_{1}, S_{1}^{2}) \ddot{u} X_{2} \sim N(m_{2}, S_{2}^{2}) \overset{\vee}{p} \bowtie X_{1} + X_{2} \sim N(m_{1} + m_{2}, S_{1}^{2} + S_{2}^{2})$$

- We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.
- Same holds for multivariate Gaussians

- Seminal paper published in 1960
- Great web page at http://www.cs.unc.edu/~welch/kalman/
- Recursive solution for discrete linear filtering problems
 - A state $x \in R^n$
 - A measurement $z \in R^m$
 - Discrete (i.e. for time t = 1, 2, 3, ...)
 - Recursive (i.e. $x_t = f(x_{t-1})$)
 - Linear system (i.e $x_t = A x_{t-1}$)
- The problem is defined by a *linear* process model

$$\boldsymbol{x}_{t} = A \boldsymbol{x}_{t-1} + B \boldsymbol{u}_{t-1} + \boldsymbol{w}_{t-1}$$

state control Gaussian
transition Input white
(optional) noise

and a measurement linear model (with white Gaussian noise)

$$z_t = H x_t + v_t$$
 Gaussian
observation white
model noise

16-735, Howie Choset

Example

If we are given all the ingredients: x_{t-1}, z_t, A, H w_{t-1}, v_{t-1} (and B and u_{t-1}) what is the "optimal" x_t ?

$$x_{t} = A x_{t-1} + B u_{t-1} + w_{t-1}$$

$$z_{t} = H x_{t} + v_{t}$$
With
$$w_{t-1} \sim N(0, Q)$$

$$v_{t} \sim N(0, R)$$

What if

- *Q* is tiny and *R* is large?
- *R* is large and *Q* is tiny?
- Q and R are large?
- Q and R are tiny?

- A priori estimate \hat{x}'_t (prediction using process model) at step t
- A posteriori estimate \hat{x}_t (correction using measurement model) at step t

Compute *a posteriori* estimate as a linear combination of an *a priori* estimate and difference between the actual measurement and expected measurement

$$\hat{x}_t = \hat{x}_t' + K_t (z_t - H \hat{x}_t')$$

What is *K*?

Gain or "blending factor" that adds a measurement innovation

Define a priori error between true state and a priori estimate

$$\boldsymbol{e}_t' = \boldsymbol{x}_t - \hat{\boldsymbol{x}}_t'$$

and its covariance as

$$\Sigma'_t = E(\boldsymbol{e}'_t \boldsymbol{e}'^T_t)$$

Define a posteriori error between true state and posterior estimate

 $\boldsymbol{e}_t = \boldsymbol{x}_t - \hat{\boldsymbol{x}}_t$ and its covariance as

$$\Sigma_t = E(\boldsymbol{e}_t \boldsymbol{e}_t^T)$$

Then *K* that minimizes the a posteriori covariance is defined by

$$K_t = \Sigma_t' H^T (H \Sigma_t' H^T + R)^{-1}$$

Note that

- If $R \to 0$ then $K_t = H^{-1}$ (increase residual weight) $\widehat{x}_t = \widehat{x}'_t + K(\underline{z}_t H\widehat{x}'_t)$
- If $\Sigma_t \rightarrow 0$ then $K_t = 0$ (decrease residual weight)

residual

- Recipe:
 - Given

$$\hat{\boldsymbol{x}}_0, \Sigma_0$$

- Time update
 - $\hat{\boldsymbol{x}}_{t}' = A\hat{\boldsymbol{x}}_{t-1} + B\boldsymbol{u}_{t-1}$ $\boldsymbol{\Sigma}_{t}' = A\boldsymbol{\Sigma}_{t-1}A^{T} + Q$
- Measurement update

$$K_{t} = \Sigma_{t}' H^{T} (H\Sigma_{t}' H^{T} + R)^{-1}$$
$$\hat{x}_{t} = \hat{x}_{t}' + K_{t} (z_{t} - H\hat{x}_{t}')$$
$$\Sigma_{t} = (1 - K_{t} H)\Sigma_{t}'$$

Some Examples

- Point moving on the line according to f = m a
 - state is position and velocity
 - input is force
 - sensing is position
- Point in the plane under Newtonian laws
- Non-holonomic kinematic system (no dynamics)
 - state is workspace configuration
 - input is velocity command
 - sensing could be direction and/or distance to beacons
- All dynamic systems are "open-loop" integration
 - Force \rightarrow acceleration \rightarrow velocity \rightarrow position
- Role of sensing is to "close the loop" and pin down state

16-735, Howie Choset

Fully Observable vs Partially Observable

A concrete example

Process Model $\hat{x}_{t}' = \hat{x}_{t-1} + 1$ $\hat{x}_t' = A\hat{x}_{t-1} + Bu_{t-1}$ $\hat{x}_{0} = 0$ $\sigma_0 = 1$ $v_{t} \sim N(0,1)$ **Observation Model** $z_{t} = 2x_{t}$ $Z_t = H X_t$ $w_t \sim N(0,2)$ $\hat{x}_1' = 0 + 1 = 1$ $\hat{x}_{t}' = A\hat{x}_{t-1} + Bu_{t-1}$ $\Sigma_t' = A \Sigma_{t-1} A^T + O$ $\sigma_1' = 1 + 1 = 2$ $z_1 = 2.1$ $K_1 = 2 \times 2(2 \times 2 \times 2 + 2)^{-1}$ $K_t = \Sigma_t' H^T (H \Sigma_t' H^T + R)^{-1}$ $K_1 = 0.4$ $\hat{x}_{t+1} = \hat{x}'_{t+1} + K_{t+1}(z_{t+1} - H\hat{x}'_{t+1})$ $\hat{x}_1 = 1 + 0.4(2.1 - 2 \times 1)$ $\hat{x}_1 = 1.04$ $\sigma_1 = (1 - 0.4 \times 2)2$ $\Sigma_{t} = (I - K_{t}H)\Sigma_{t}'$ $\sigma_1 = 0.4$

Kalman Filter for Dead Reckoning

- Robot moves along a straight line with state x = [p, v]^T
 p: position
 v: velocity
- *u* is the input force applied to the robot

Newton's 2nd law
$$\dot{v} = \frac{u}{m}$$
 first order finite difference: $\frac{v_{t+1} - v_t}{\Delta t} = \frac{u_t}{m}$
 $\mathbf{x}_{t+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 \\ \Delta t \\ m \end{bmatrix} u_t$ Integrate velocity
 $x_{t+1} = \begin{bmatrix} p_{t+1} \\ v_{t+1} \end{bmatrix} = \begin{bmatrix} p_t + v_t \Delta t \\ v_t \end{bmatrix} + \begin{bmatrix} 0 \\ u_t \\ \Delta t \end{bmatrix} \rightarrow$ Integrate acceleration
• Robot has velocity sensor
 $\mathbf{z}_t = H\mathbf{x}_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix}$ The measured velocity depends on the robot velocity (du!)

Example

Let plug some numbers $\boldsymbol{x}_{1}^{\prime} = \begin{bmatrix} 1 & 0.1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0$ m = 1 $\Delta t = 0.1$ $\boldsymbol{x}_1' = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ prediction at t = 1 $\boldsymbol{v}_t \sim N(0, \mathbf{Q})$ $w_t \sim N(0, R)$ $\Sigma_{1}' = \begin{bmatrix} 1 & 0.1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0.1 \\ 0 & 1 \end{bmatrix}^{T} + \begin{bmatrix} 0.1 & 0 \\ 0 & 0 \end{bmatrix}$ $\mathbf{Q} = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$ $\Sigma'_1 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$ prediction covariance at t = 1 $\mathbf{R} = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Start at rest from the $K_t = \Sigma_t' H^T (H \Sigma_t' H^T + R)^{-1}$ current position $K_1 = \Sigma_1' H^T \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 2 \end{bmatrix}^{-1}$ Uh oh! $x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ Matrix is singular. The reason is that an $\mathbf{z}_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}_t \qquad \text{infinite number of states}$ $\Sigma_0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ can generate the same observation

Observability

• If *H* does not provide a one-to-one mapping between the state and the measurement, then the system is *unobservable*

$$\boldsymbol{z}_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x}_t$$

In this case *H* is singular, such that many states can generate the same observation

Kalman Filter Limitations

- Assumptions:
 - Linear state dynamics
 - Observations linear in state
 - White Gaussian noise
- What can we do if system is not linear?
 - Non-linear state dynamics
 - Non-linear observations

$$\begin{aligned} \boldsymbol{x}_t &= A\boldsymbol{x}_{t-1} + B\boldsymbol{u}_{t-1} + \boldsymbol{w}_{t-1} \\ \boldsymbol{z}_t &= H\boldsymbol{x}_t + \boldsymbol{v}_t \end{aligned}$$

$$\begin{aligned} \boldsymbol{x}_t &= \boldsymbol{f}(\boldsymbol{x}_{t-1}, \boldsymbol{u}_{t-1}, \boldsymbol{w}_{t-1}) \\ \boldsymbol{z}_t &= \boldsymbol{h}(\boldsymbol{x}_t, \boldsymbol{v}_t) \end{aligned}$$

Linearize it!

$$\begin{aligned} \mathbf{x}_{t} &\approx \widetilde{\mathbf{x}}_{t} + A(\mathbf{x}_{t-1} - \widehat{\mathbf{x}}_{t-1}) + W\mathbf{w}_{t-1} & \widetilde{\mathbf{x}}_{t} = \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}, 0) \\ \mathbf{z}_{t} &\approx \widetilde{\mathbf{z}}_{t} + H(\mathbf{x}_{t} - \widetilde{\mathbf{x}}_{t}) + V\mathbf{v}_{t} & \widetilde{\mathbf{z}}_{t} = \mathbf{h}(\widetilde{\mathbf{x}}_{t}, 0) \end{aligned}$$

Extended Kalman Filter

• Where A, H, W and V are Jacobians defined by

$$A(\mathbf{x}_{t}) = \begin{bmatrix} \frac{\partial f_{1}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{x}_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{x}_{n}} \end{bmatrix}$$
$$W(\mathbf{x}_{t}) = \begin{bmatrix} \frac{\partial f_{1}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{w}_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{w}_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{w}_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{x}_{t}, \mathbf{u}_{t}, 0)}{\partial \mathbf{w}_{n}} \end{bmatrix}$$
$$V(\mathbf{x}_{t}) = \begin{bmatrix} \frac{\partial \mathbf{h}_{1}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{h}_{n}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{n}} \end{bmatrix}$$
$$H(\mathbf{x}_{t}) = \begin{bmatrix} \frac{\partial \mathbf{h}_{1}(\mathbf{x}_{t}, 0)}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}(\mathbf{x}_{t}, 0)}{\partial \mathbf{x}_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{h}_{n}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}(\mathbf{x}_{t}, 0)}{\partial \mathbf{v}_{n}} \end{bmatrix}$$

Extended Kalman Filter

- Kalman Filter Recipe:
 - Given
 - \hat{x}_0, Σ_0
 - Prediction
 - $\widehat{\boldsymbol{x}}_t' = A\widehat{\boldsymbol{x}}_{t-1} + B\boldsymbol{u}_{t-1}$
 - $\Sigma_t' = A \Sigma_{t-1} A^T + Q$
 - Measurement correction
 - $K_t = \Sigma_t' H^T (H \Sigma_t' H^T + R)^{-1}$ $\hat{\boldsymbol{x}}_t = \hat{\boldsymbol{x}}_t' + K(\boldsymbol{z}_t H \hat{\boldsymbol{x}}_t')$ $\Sigma_t = (I K_t H) \Sigma_t'$

- Extended Kalman Filter Recipe:
 - Given \hat{x}_0, Σ_0
 - Prediction $\widehat{\boldsymbol{x}}_{t}' = \boldsymbol{f}(\widehat{\boldsymbol{x}}_{t-1}, \boldsymbol{u}_{t-1}, \boldsymbol{0})$ $\Sigma_{t}' = A_{t} \Sigma_{t-1} A_{t}^{T} + W_{t} Q W_{t}^{T}$
 - Measurement correction
 - $K_t = \Sigma_t' H_t^T (H_t \Sigma_t' H_t^T + V_t R V_t^T)^{-1}$

$$\widehat{\mathbf{x}}_t = \widehat{\mathbf{x}}'_t + K_t(\mathbf{z}_t - \mathbf{h}(\widehat{\mathbf{x}}'_t, \mathbf{0}))$$
$$\Sigma_t = (I - K_t H_t) \Sigma'_t$$

EKF for Range-Bearing Localization

- State $s_t = \begin{vmatrix} \gamma_t \\ \gamma_t \\ \rho \end{vmatrix}$ position and orientation
- Input $u_t = \begin{bmatrix} v_t \\ \omega_t \end{bmatrix}$ forward and rotational velocity
- Process model $f(s_{t-1}, u_{t-1}w_{t-1}) = \begin{bmatrix} x_{t-1} + \Delta t \ v_{t-1} \cos \theta_{t-1} \\ y_{t-1} + \Delta t \ v_{t-1} \sin \theta_{t-1} \\ \theta_{t-1} + \Delta t \ \omega_{t-1} \end{bmatrix} + \begin{bmatrix} w_{x_t} \\ w_{y_t} \\ w_{\theta_t} \end{bmatrix}$ So 200

Given a map, the robot sees N landmarks with coordinates

$$\boldsymbol{l}_1 = [\boldsymbol{x}_{l_1} \quad \boldsymbol{y}_{l_1}]^T, \cdots, \boldsymbol{l}_N = [\boldsymbol{x}_{l_N} \quad \boldsymbol{y}_{l_N}]^T$$

 $\boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{h}_{1}(\boldsymbol{s}_{t}, \boldsymbol{v}_{1}) \\ \vdots \\ \boldsymbol{h}_{N}(\boldsymbol{s}_{t}, \boldsymbol{v}_{N}) \end{bmatrix} \quad \boldsymbol{h}_{i}(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}) = \begin{vmatrix} \sqrt{\left(\boldsymbol{x}_{t} - \boldsymbol{x}_{l_{i}}\right)^{2} + \left(\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}\right)^{2}} \\ \tan^{-1}\frac{\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}}{\boldsymbol{x}_{t} - \boldsymbol{x}_{t}} - \boldsymbol{\theta}_{t} \end{vmatrix} + \begin{bmatrix} \boldsymbol{v}_{r} \\ \boldsymbol{v}_{b} \end{bmatrix}$

Linearize Process Model

$$\boldsymbol{f}(\boldsymbol{s}_{t-1}, \boldsymbol{u}_{t-1} \boldsymbol{w}_{t-1}) = \begin{bmatrix} x_{t-1} + \Delta t \, v_{t-1} \cos \theta_{t-1} \\ y_{t-1} + \Delta t \, v_{t-1} \sin \theta_{t-1} \\ \theta_{t-1} + \Delta t \, \omega_{t-1} \end{bmatrix} + \begin{bmatrix} w_{x_t} \\ w_{y_t} \\ w_{\theta_t} \end{bmatrix}$$

$$A(\mathbf{x}_t) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x}_t, \mathbf{u}_t, 0)}{\partial \mathbf{x}_1} & \cdots & \frac{\partial f_1(\mathbf{x}_t, \mathbf{u}_t, 0)}{\partial \mathbf{x}_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{x}_t, \mathbf{u}_t, 0)}{\partial \mathbf{x}_1} & \cdots & \frac{\partial f_n(\mathbf{x}_t, \mathbf{u}_t, 0)}{\partial \mathbf{x}_n} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & -\Delta t \, v_{t-1} \sin \theta_{t-1} \\ 0 & 1 & -\Delta t \, v_{t-1} \cos \theta_{t-1} \\ 0 & 0 & 1 \end{bmatrix}$$

Linearize Observation Model

$$\boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{h}_{1}(\boldsymbol{s}_{t}, \boldsymbol{v}_{1}) \\ \vdots \\ \boldsymbol{h}_{N}(\boldsymbol{s}_{t}, \boldsymbol{v}_{N}) \end{bmatrix} \quad \boldsymbol{h}_{i}(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}) = \begin{bmatrix} \sqrt{\left(\boldsymbol{x}_{t} - \boldsymbol{x}_{l_{i}}\right)^{2} + \left(\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}\right)^{2}} \\ \tan^{-1} \frac{\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}}{\boldsymbol{x}_{t} - \boldsymbol{x}_{l_{i}}} - \boldsymbol{\theta}_{t} \end{bmatrix}} + \begin{bmatrix} \boldsymbol{v}_{r} \\ \boldsymbol{v}_{b} \end{bmatrix}$$

$$H(\boldsymbol{s}_t) = \begin{bmatrix} \frac{\partial \boldsymbol{h}_1(\boldsymbol{s}_t, \boldsymbol{0})}{\partial \boldsymbol{s}_1} & \cdots & \frac{\partial \boldsymbol{h}_1(\boldsymbol{s}_t, \boldsymbol{0})}{\partial \boldsymbol{s}_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \boldsymbol{h}_n(\boldsymbol{s}_t, \boldsymbol{0})}{\partial \boldsymbol{s}_1} & \cdots & \frac{\partial \boldsymbol{h}_n(\boldsymbol{s}_t, \boldsymbol{0})}{\partial \boldsymbol{s}_n} \end{bmatrix}$$

$$\begin{aligned} H_i(k+1,j) &= \\ \begin{bmatrix} \frac{(\hat{x}_r(k+1|k) - x_{\ell j})^2 + (\hat{y}_r(k+1|k) - y_{\ell j})^2}{\sqrt{(\hat{x}_r(k+1|k) - x_{\ell j})^2 + (\hat{y}_r(k+1|k) - y_{\ell j})^2}} & 0 \\ \frac{-(\hat{y}_r(k+1|k) - y_{\ell j})}{1 + \left(\frac{\hat{y}_r(k+1|k) - y_{\ell j}}{\hat{x}_r(k+1|k) - x_{\ell j}}\right)^2 \left(\hat{x}_r(k+1|k) - x_{\ell j}\right)^2} & \frac{1}{1 + \left(\frac{\hat{y}_r(k+1|k) - y_{\ell j}}{\hat{x}_r(k+1|k) - x_{\ell j}}\right)^2 \left(\hat{x}_r(k+1|k) - x_{\ell j}\right)} & -1 \end{bmatrix} \end{aligned}$$

Data Association

 From observation model, we have an expected

$$\boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{h}_{1}(\boldsymbol{s}_{t}, \boldsymbol{v}_{1}) \\ \vdots \\ \boldsymbol{h}_{N}(\boldsymbol{s}_{t}, \boldsymbol{v}_{N}) \end{bmatrix}$$

$$\widehat{\boldsymbol{x}}_t = \widehat{\boldsymbol{x}}_t' + K_t(\boldsymbol{z}_t - \boldsymbol{h}(\widehat{\boldsymbol{x}}_t', \boldsymbol{0}))$$

- So if we have N landmarks *I*₁, ..., *I*_N and we are given a scan *z*_t, how do associate each landmark to a scan observation?
- Given an observed landmark, we can do
 - Nearest neighbor
 - Mahalanobis distance
 - Probabilistic Data Association Filter (PDAF)

Xiaolei Hou

Pick the best landmark or, if it is too "different" create a new landmark I_{N+1}

From Localization to Mapping

- For us, the landmarks have been a known quantity (we have a map with the coordinates of the landmarks), but landmarks are not part of the state
- Two choices:
 - Make the state the location of the landmarks relative to the robot (I also know exactly where I am ...)
 - No notion of location relative to past history
 - No fixed reference for landmarks
 - Make the state the robot location now (relative to where we started) plus landmark locations
 - + Landmarks now have fixed location
 - Knowledge of my location slowly degrades (but this is inevitable ...)

Kalman Filters and SLAM

- Localization: state is the location of the robot
- Mapping: state is the location of 2D landmarks
- SLAM: state combines both
- If the state is $\mathbf{s}_t = \begin{bmatrix} x_t & y_t & \theta_t & l_{1_t}^T & \cdots & l_{N_t}^T \end{bmatrix}^T$ then we can write a linear observation system
 - note that if we don't have some fixed landmarks, our system is *unobservable* (we can't fully determine all unknown quantities)
- Covariance Σ is represented by

http://ais.informatik.uni-freiburg.de

(σ_{xx}	σ_{xy}	$\sigma_{x\theta}$	$\sigma_{xm_{1,x}}$	$\sigma_{xm_{1,y}}$	• • •	$\sigma_{xm_{n,x}}$	$\sigma_{xm_{n,y}}$
	σ_{yx}	σ_{yy}	$\sigma_{y\theta}$	$\sigma_{ym_{1,x}}$	$\sigma_{ym_{1,y}}$		$\sigma_{m_{n,x}}$	$\sigma_{m_{n,y}}$
	$\sigma_{\theta x}$	$\sigma_{ heta y}$	$\sigma_{ heta heta}$	$\sigma_{ heta m_{1,x}}$	$\sigma_{ heta m_{1,y}}$		$\sigma_{ heta m_{n,x}}$	$\sigma_{\theta m_{n,y}}$
	$\sigma_{m_{1,x}x}$	$\sigma_{m_{1,x}y}$	σ_{θ}	$\sigma_{m_{1,x}m_{1,x}}$	$\sigma_{m_{1,x}m_{1,y}}$		$\sigma_{m_{1,x}m_{n,x}}$	$\sigma_{m_{1,x}m_{n,y}}$
	$\sigma_{m_{1,y}x}$	$\sigma_{m_{1,y}y}$	σ_{θ}	$\sigma_{m_{1,y}m_{1,x}}$	$\sigma_{m_{1,y}m_{1,y}}$		$\sigma_{m_{1,y}m_{n,x}}$	$\sigma_{m_{1,y}m_{n,y}}$
	÷	÷	÷	:	÷	·	•	÷
	$\sigma_{m_{n,x}x}$	$\sigma_{m_{n,x}y}$	σ_{θ}	$\sigma_{m_{n,x}m_{1,x}}$	$\sigma_{m_{n,x}m_{1,y}}$		$\sigma_{m_{n,x}m_{n,x}}$	$\sigma_{m_{n,x}m_{n,y}}$
1	$\sigma_{m_{n,y}x}$	$\sigma_{m_{n,y}y}$	σ_{θ}	$\sigma_{m_{n,y}m_{1,x}}$	$\sigma_{m_{n,y}m_{1,y}}$	• • •	$\sigma_{m_{n,y}m_{n,x}}$	$\sigma_{m_{n,y}m_{n,y}}$)

Step 1: EKF Range Bearing SLAM State Update

- State $s_t = \begin{bmatrix} x_t & y_t & \theta_t & l_{1_t}^T & \cdots & l_{N_t}^T \end{bmatrix}^T$ position and orientation and landmarks
- Input $\boldsymbol{u}_t = \begin{bmatrix} v_t \\ \omega_t \end{bmatrix}$ forward and rotational velocity
- The process model for localization is

$$s_{t}' = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \Delta t v_{t-1} \cos \theta_{t-1} \\ \Delta t v_{t-1} \sin \theta_{t-1} \\ \Delta t \omega_{t-1} \end{bmatrix}$$

This model is augmented for 2N+3 dimensions to accommodate landmarks. This results in the process equation

$$\begin{bmatrix} x'_{t-1} \\ y'_{t-1} \\ \theta'_{t-1} \\ l'_{1,t-1} \\ \vdots \\ l'_{N,t-1} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \\ l_{1,t-1} \\ \vdots \\ l_{N,t-1} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta t v_{t-1} \cos \theta_{t-1} \\ \Delta t v_{t-1} \sin \theta_{t-1} \\ \Delta t \omega_{t-1} \end{bmatrix}$$

Step 2: EKF Range Bearing SLAM Covariance Update

Step 1b: Update the covariance matrix. The function **f**(**s**,**u**,**w**) only affects the robot's location and not the landmarks

Step 3: EKF Range Bearing SLAM Correction Gain

$$K_t = \Sigma_t' H_t^T (H_t \Sigma_t' H_t^T + V_t R V_t^T)^{-1}$$

$$\boldsymbol{h}_{i}(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}) = \begin{bmatrix} \sqrt{\left(x_{t} - x_{l_{i}}\right)^{2} + \left(y_{t} - y_{l_{i}}\right)^{2}} \\ \tan^{-1} \frac{y_{t} - y_{l_{i}}}{x_{t} - x_{l_{i}}} - \theta_{t} \end{bmatrix} + \begin{bmatrix} v_{r} \\ v_{b} \end{bmatrix}$$

Step 4: EKF Range Bearing SLAM Measurement

$$\boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{h}_{1}(\boldsymbol{s}_{t}, \boldsymbol{v}_{1}) \\ \vdots \\ \boldsymbol{h}_{N}(\boldsymbol{s}_{t}, \boldsymbol{v}_{N}) \end{bmatrix} \iff \boldsymbol{h}_{i}(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}) = \begin{bmatrix} \sqrt{\left(\boldsymbol{x}_{t} - \boldsymbol{x}_{l_{i}}\right)^{2} + \left(\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}\right)^{2}} \\ \tan^{-1}\frac{\boldsymbol{y}_{t} - \boldsymbol{y}_{l_{i}}}{\boldsymbol{x}_{t} - \boldsymbol{x}_{l_{i}}} - \boldsymbol{\theta}_{t} \end{bmatrix}} + \begin{bmatrix} \boldsymbol{v}_{r} \\ \boldsymbol{v}_{b} \end{bmatrix}$$

- Observe N landmarks $z_t^i = \begin{bmatrix} r_t^i & \phi_t^i \end{bmatrix}$
- Must have data association

Which measured landmark corresponds to h_i ?

If s_t contains the coordinates of *N* landmarks in the map, h_i predicts the measurement of each landmark

Must figure which measured landmark corresponds to h_i .

- Nearest neighbor
- Probabilistic Data Association Filter (PDAF)
- If using visual landmarks use visual descriptors to match landmarks
- If the measurement does not correspond to any predicted observation, then initialize and add the landmark to the map

$$\begin{bmatrix} l_x \\ l_y \end{bmatrix} = \begin{bmatrix} x_t \\ y_t \end{bmatrix} + \begin{bmatrix} r_t^i \cos(\phi_t^i + \theta_t) \\ r_t^i \sin(\phi_t^i + \theta_t) \end{bmatrix}$$

Step 5: EKF Range Bearing SLAM Correction Update

• From K and H update the posterior state estimate

 $\widehat{\boldsymbol{x}}_t = \widehat{\boldsymbol{x}}'_t + K_t(\boldsymbol{z}_t - \boldsymbol{h}(\widehat{\boldsymbol{x}}'_t, \boldsymbol{0}))$ $\Sigma_t = (I - K_t H_t) \Sigma'_t$

Tada! And we are done!

Bearing-Only SLAM

Often use omni-directional sensor

Why Bearing-Only SLAM is Challenging

• We cannot estimate the landmark location with one measurement

• We must guess the range and initialize with a large covariance due to the lack of range information

• The location is very uncertain and difficult to resolve with low parallax measurements

• The measurement model is very nonlinear, which breaks conventional filtering techniques

Bearing-Only SLAM with EKF

$$K_t = \Sigma_t' H_t^T (H_t \Sigma_t' H_t^T + V_t R V_t^T)^{-1}$$

• EKF uses the standard Kalman update

• The Kalman gain is computed through a linearization about the current estimate

- The result diverges
- Very dependent on the initialization "guess" of landmarks

http://www.pracsyslab.org

Mono SLAM

Real-Time Camera Tracking in Unknown Scenes

Robot Vision, Imperial College

- A visual landmark with a single camera does not provide range
- Data association is given by tracking or matching visual descriptors/patches

http://homepages.inf.ed.ac.uk/

Experimental Results – The Victoria Park Dataset

 A well studied benchmark dataset used in many other SLAM publications

• We simply ignored all of the range values provided with each landmark measurement

Navigation: RMS Titanic

Leonard & Eustice

- EKF-based system
- 866 images
- 3494 camera constraints
- Path length 3.1km 2D / 3.4km 3D
- Convex hull > 3100m²
- 344 min. data / 39 min. ESDF*

*excludes image registration time

Search of Flight 370

Summary

- Basic system modeling ideas
- Kalman filter as an estimation method from a system model
- Linearization as a way of attacking a wider variety of problems
- Mapping localization and mapping into EKF
- Extensions for managing landmark matching and not-wellconstrained systems.