Special Topics in Security and Privacy of Medical Information

Sujata Garera

Hippocratic Databases

- Privacy preservation inherent in the database
 - “And about whatever I may see or hear in treatment or even without treatment, in the life of human beings - things that should not ever be blurted out outside- I will remain silent, holding such things to be unutterable” - Hippocratic Oath

Privacy guidelines

- US Privacy Act of 1974 set out comprehensive regime limiting the collection, use and dissemination of personal information held by Federal agencies.
 - Collection limitation
 - Data quality
 - Purpose specification
 - Use limitation
 - Security safeguards
 - Openness
 - Individual participation and accountability
Hippocratic Databases: Principles

- **Purpose Specification**
 - For personal information stored in the database, the purpose shall be associated
- **Consent**
 - The purposes associated will have consent of the donor of the personal information
- **Limited Collection**
 - The personal information collected should be limited to minimum necessary

Hippocratic Databases: Principles

- **Limited Use**
 - The database shall run only those queries that are consistent with the information being collected
- **Limited Disclosure**
 - The personal information stored in the database shall not be communicated outside the database unless consent received

Hippocratic Databases: Principles

- **Limited Retention**
 - Information will be retained only as long as necessary
- **Accuracy**
 - Personal information stored will be accurate and up-to-date
- **Safety**
 - Personal Information will be protected by security safeguards against theft
Hippocratic Databases: Principles

- Openness
 - A donor shall be able to access all information about donor
- Compliance
 - A donor shall be able to verify compliance with above principles

Strawman Design: Use case

- Online bookseller
- Needs minimum information to complete transaction
 - Name, shipping address and credit card
 - Email address
- Gives recommendations
- Publishes book popularity
Design: Usecase

- Alice is a privacy fundamentalist
 - Doesn’t want any information about purchase retained
- Bob is a privacy pragmatist
 - Convenience of providing information only once
 - Likes recommendations
 - Does not want his transactions used for purchase circles

Strawman Design: Architecture
Privacy Metadata

![Diagram of Privacy Metadata]

Figure 2: Privacy Metadata Schema

<table>
<thead>
<tr>
<th>Table</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>privacy-policies</td>
<td>purpose, table, attribute, { external-recipients }, retention</td>
</tr>
<tr>
<td>privacy-authorizations</td>
<td>purpose, table, attribute, { authorized-users }</td>
</tr>
</tbody>
</table>

Figure 3: Database Schema

<table>
<thead>
<tr>
<th>Table</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer</td>
<td>purpose, customer-id, name, shipping-address, email, credit-card-info</td>
</tr>
<tr>
<td>order</td>
<td>purpose, customer-id, transaction-id, book-info, status</td>
</tr>
</tbody>
</table>

Figure 4: Privacy Policies Table

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table</th>
<th>Attribute</th>
<th>External Recipients</th>
<th>Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>purchase</td>
<td>customer</td>
<td>name</td>
<td>{ delivery-company, credit-card-company }</td>
<td>1 month</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>shipping-address</td>
<td>{ delivery-company }</td>
<td>1 month</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>email</td>
<td></td>
<td>1 month</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>credit-card-info</td>
<td>{ credit-card-company }</td>
<td>1 month</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>name</td>
<td></td>
<td>3 years</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>shipping-address</td>
<td></td>
<td>3 years</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>email</td>
<td></td>
<td>3 years</td>
</tr>
<tr>
<td>payment</td>
<td>order</td>
<td>back-info</td>
<td></td>
<td>10 years</td>
</tr>
<tr>
<td>payment</td>
<td>order</td>
<td>shipping-address</td>
<td>{ aggregated-all }</td>
<td>1 year</td>
</tr>
<tr>
<td>payment</td>
<td>order</td>
<td>back-info</td>
<td>{ aggregated-all }</td>
<td>1 year</td>
</tr>
</tbody>
</table>
Privacy Metadata

- Assumes that purpose and set of attributes completely determines the set of recipients and retention period

- Assumption that set of attributes collected for a purpose is fixed

Data Collection
Data Collection

- Data Insertion
 - After privacy policy checks, data transmitted from user and stored in tables
 - Recall that each table has attribute purpose
 - Alice’s records would have a single purpose, purchase
 - Bob’s records would have three purposes, purchase, registration and recommendations

Data Collection

- Data Preprocessing
 - Data Accuracy Analyzer
 - Run checking and/or cleansing functions before or after data insertion
 - Alice’s address may be checked against database of street addresses to catch typos in the address

Queries
Queries

- During query execution
 - Record Access Control ensures that only records whose purpose attribute includes the query purpose will be visible to that query
 - E.g. Queries tagged recommendations will be able to see Bob’s set of books but not Alice’s since Alice’s purpose attribute only lists purchase

- After query execution
 - E.g. Mallory decides to steal email addresses instead of credit card information
 - Customer service regularly accesses email addresses
 - Neither Attribute Access Control nor the Record Access Control will be able to stop the query
 - Query intrusion detector is run before on the query results to spot queries with different access patterns
 - Mallory’s queries would be marked as highly suspicious

<table>
<thead>
<tr>
<th>purpose</th>
<th>table</th>
<th>attribute</th>
<th>authorized-users</th>
</tr>
</thead>
<tbody>
<tr>
<td>purchase</td>
<td>customer</td>
<td>customer-id</td>
<td>all</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>name</td>
<td>shipping, charge, customer-service</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>email</td>
<td>shipping</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>shipping-address</td>
<td>shipping, customer-service</td>
</tr>
<tr>
<td>purchase</td>
<td>customer</td>
<td>credit-card-info</td>
<td>charge</td>
</tr>
<tr>
<td>purchase</td>
<td>order</td>
<td>customer-id</td>
<td>all</td>
</tr>
<tr>
<td>purchase</td>
<td>order</td>
<td>transaction-id</td>
<td>all</td>
</tr>
<tr>
<td>purchase</td>
<td>order</td>
<td>book-info</td>
<td>shipping</td>
</tr>
<tr>
<td>purchase</td>
<td>order</td>
<td>store</td>
<td>shipping, customer-service</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>customer-id</td>
<td>all</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>name</td>
<td>registration</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>shipping-address</td>
<td>registration</td>
</tr>
<tr>
<td>registration</td>
<td>customer</td>
<td>email</td>
<td>registration</td>
</tr>
<tr>
<td>recommendations</td>
<td>order</td>
<td>customer-id</td>
<td>mining</td>
</tr>
<tr>
<td>recommendations</td>
<td>order</td>
<td>transaction-id</td>
<td>mining</td>
</tr>
<tr>
<td>recommendations</td>
<td>order</td>
<td>book-info</td>
<td>mining</td>
</tr>
<tr>
<td>purchase-circles</td>
<td>customer</td>
<td>customer-id</td>
<td>stop</td>
</tr>
<tr>
<td>purchase-circles</td>
<td>customer</td>
<td>shipping-address</td>
<td>stop</td>
</tr>
<tr>
<td>purchase-circles</td>
<td>order</td>
<td>customer-id</td>
<td>stop</td>
</tr>
<tr>
<td>purchase-circles</td>
<td>order</td>
<td>book-info</td>
<td>stop</td>
</tr>
</tbody>
</table>

Figure 8: Purchase Authorizations Table
Data retention

- Delete items that have outlived their purpose
 - Alice’s information in order table will be deleted after a month while Bob’s will be kept for a longer period
 - Recall Bob’s purposes include both purchase and recommendations

Challenges

- Efficiency
 - Can current database systems afford the additional cost of privacy checking during a record fetch?

- Limited Collection
 - Query access only data values to fulfill its purpose and database store minimal information necessary to fulfill all the purposes

Challenges

- Limited Retention
 - How do you completely delete a record from logs and past checkpoints without affecting recovery?

- Safety
 - Encrypting database on disk protects it from adversarial access but hinders usability
 - How do you index encrypted data? How do you run queries against such data?
Suggested Reading

- Hippocratic Databases
 - By Agarwal et al.