
History Types and Verification

Christian Skalka1 and Scott Smith2

1 The University of Vermont skalka@cs.uvm.edu
2 The Johns Hopkins University, scott@cs.jhu.edu

Abstract. We develop a novel programming logic for verifying security
properties, allowing histories of program execution to be taken into ac-
count: validity of access depends on the explicit sequence of past actions.
The main result of the paper is a novel static analysis combining a type
and effect inference system with a model-checking procedure, that guar-
antees validity of run-time history assertions. Among other examples,
we illustrate the power of the framework by showing how the parameter-
ized privileges of Java stack inspection may be statically verified, solving
an open problem.

1 Introduction

Programming language-based security models for access control have a distinct
advantage over other approaches: in a programming language, there is an ability
to base access control decisions on fine-grained contexts of execution. Since secure
programs execute in trusted runtimes, the order of events can be tracked without
possibility of forgery. For example, stack-based access control [10, 16] associates
authorization levels with regions of code, and ensures that when any privilege
is checked, the sequence of callers on the call stack preceding the check are all
authorized for that privilege. History-based access control is another example
[1]: all execution events preceding the check must ensure authorization for the
checked privilege. In this paper we develop a foundational programming logic of
execution contexts, in two flavors: one for asserting properties of stack contexts,
and one for asserting properties about the context of all past events.

1.1 History-Based Specification

Fundamental to our approach is the notion of atomic events that occur during
program execution, comprising a dynamic history, a stream of events having
occurred so far. In addition, at any point in a program, it is possible to assert
a logical property of the sequence of events leading to that point. For example,
right before reading a file, we could assert that the history must contain an
“open” event for that file, or we could require that a “read” privilege for that
file was added to the active security context. The system we define for this
purpose is a programming logic, where logical assertions are embedded in the
program, which are modal with respect to their history context. There is a rich
tradition of modal assertions in programs, beginning with Hoare Logic, and the

2 Christian Skalka and Scott Smith

modal aspect is made explicit in e.g. Dynamic Logic [5]. Our logic differs from
these approaches in that it is not the present state of variables, but past events,
and the order in which they occur, that defines the context of assertions.

These logical assertions are rooted in the program run-time. The main techni-
cal contribution of this work is a type effect system which verifies these assertions
statically, ensuring safety of typable programs in this model. We also define a
particular decidable assertion language based on the µ-calculus; combining this
logic with our decidable type inference algorithm gives a completely automatic
framework for verifying assertions in programs. Our theoretical approach is gen-
eral, but our particular applications focus is security. In Sect. 8 we show how
stack inspection with parameterized privileges can be encoded. We believe ours
is the first system for statically enforcing stack inspection in the presence of
parameterized privileges. Our work is related to static systems for specifying
program state changes and resource usage patterns [4, 9, 15, 6], but these sys-
tems construct global specifications, not local, modal specifications. See Sect. 9
for a more thorough discussion of related work and our contributions.

1.2 The Technical Development

In the remaining text, we formalize our ideas in the system λhist. We first define
an operational semantics of a basic language λc

hist, its operational semantics and
type system. An extension λζ

hist is then defined which supports static typing
of dynamic constant generation. We next give a type inference algorithm for
this latter system, and show how the µ-calculus can be integrated as a static
verification logic, obtaining decidable assertion checking. Finally, a stack-history
variant is defined that redefines the history as those events in active frames
only; as an example stack-based assertion, we show how stack inspection can be
expressed as a µ-calculus formula in this variant.

2 The Language λhist

In this section we formally define the core calculus of λhist, denoted λc
hist. In

Sect. 3 a notion of dynamic constant is added; here we focus on the basic aspects
of the system.

2.1 Syntax and Semantics

The syntax and semantics of the core theory λc
hist are given in Fig. 1 and Fig. 2.

We assume the syntactic sugar ∧e1e2 , e1 ∧ e2, and ∨e1e2 , e1 ∨ e2, and let
JeKbool denote the usual interpretation of boolean expressions. Functions, written
λzx.e, possess a recursive binding mechanism where z is the self variable; we may
write λx.e for λzx.e if z is not free in e.

An event ev is a named entity parameterized by a constant c (we treat only
the unary case in this presentation, but the extension to n-ary events is straight-
forward). These constants c ∈ C are abstract; this set could for example be

History Types and Verification 3

c ∈ C atomic constants

b ::= true | false boolean values

v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | () values

e ::= v | e e | ev(e) | φ(e) | if e then e else e | letx = v in e expressions

η ::= ε | ev(c) | η; η histories

E ::= [] | v E | E e | ifE then e else e | ev(E) | φ(E) evaluation contexts

Fig. 1. λc
hist language syntax

η, (λzx.e)v → η, e[v/x][λzx.e/z] (β)

η,¬b → η, J¬bKbool (not)

η, b1 ∧ b2 → η, Jb1 ∧ b2Kbool (and)

η, b1 ∨ b2 → η, Jb1 ∨ b2Kbool (or)

η, if true then e1 else e2 → η, e1 (if1)

η, if false then e1 else e2 → η, e2 (if2)

η, letx = v in e → η, e[v/x] (let)

η, ev(c) → η; ev(c), () (event)

η, φ(c) → η; evφ(c), () if (Π(φ)(c))(η; evφ(c)) (check)

η,E[e] → η′, E[e′] if η, e→ η′, e′ (context)

Fig. 2. λc
hist language semantics

strings or IP addresses. Ordered sequences of these events constitute histories η,
which maintain the sequence of events experienced during program execution.
History assertions φ(c), also parameterized by a constant c, may be used to assert
desirable properties of histories. These assertions are in a to-be-specified logical
syntax (one example syntax is given in Sect. 5). We presuppose existence of a
meaning function Π(φ) such that (Π(φ)(c))(η) holds iff φ(c) is valid for history
η. For each formula φ there is a corresponding event evφ, issued at the point φ
is checked.

The operational semantics is defined as a call-by-value small step reduction
relation → on configurations η, e, where η is the history of run-time program
events. We write →? to denote the reflexive, transitive closure of →. Note that
in the event reduction rule, an event ev(c) encountered during execution is added
to the end of the history, while in the check rule, the predicate φ(c) is required
to hold on the current program history, according to our meaning function Π.
In case the predicate fails, execution is stuck.

4 Christian Skalka and Scott Smith

α ∈ Vs, t ∈ Vτ , h ∈ VH variables

s ::= α | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit types

H ::= ε | h | ev(s) | H;H | H|H | µh.H history types

Γ ::= ∅ | Γ ;x : τ type environments

Fig. 3. λc
hist language type syntax

For example, assuming the addition of the usual syntactic sugar for sequenc-
ing of expressions, consider the following function f :

f , λzx.ifx then ev1(c) else (ev2(c); z(true))

In the operational semantics, we have:

ε, f(false) →? ev2(c); ev1(c), ()

since the initial call to f will cause ev2 to be added to the history, followed by
a recursive call to f that hits its basis, where event ev1 is encountered.

2.2 Logical Type System

In the type analysis, we are challenged to statically identify histories that result
during execution, for which purpose we introduce history types H. In essence, any
H conservatively approximates the history η generated by an expression during
execution, by representing a set of possible histories containing at least η. A
history type may therefore be an event ev(c), or a sequencing of history types
H1;H2, a nondeterministic choice of history types H1|H2, or a µ-bound history
type µh.H which finitely represents the set of histories that may be generated by
a recursive function. History types may contain predicate events evφ(c), allowing
us to verify predicate checks at the right points in history approximations.

The syntax of types for λc
hist is given in Fig. 3. In addition to histories, we

include function types τ1
H−→ τ2, where H represents the histories that may result

by use of the function. Events are side-effects, and so these function types are
a form of effect type [8, 14, 2]. Additionally, since events and predicates are
parameterized in history types, we must be especially accurate with respect to
our typing of constants. Thus, we adopt a very simple form of singleton type {c}
[13], where only atomic constants can have singleton type. Types contain three
sorts of variables; regular type variables t, singleton type variables α, and history
type variables h. We let ψ range over variable substitutions, heterogeneous in
these sorts, with the restriction that substitutions must be sort-consistent—i.e.,
only history types may be substituted for history type variables, etc.

Type derivation rules for judgements of the form Γ,H ` e : τ are given in
Fig. 4, where Γ is an environment of variable typing assumptions. Intuitively,

History Types and Verification 5

Var
Γ, ε ` x : Γ (x)

Bool
Γ, ε ` b : bool

Unit
Γ, ε ` () : unit

And
Γ, ε ` ∧ : bool

ε−→ bool
ε−→ bool

Or
Γ, ε ` ∨ : bool

ε−→ bool
ε−→ bool

Not
Γ, ε ` ¬ : bool

ε−→ bool

Const
Γ, ε ` c : {c}

Weakening
Γ,H ` e : τ

Γ,H|H ′ ` e : τ

Event
Γ,H ` e : {s}

Γ,H; ev(s) ` ev(e) : unit

Check
Γ,H ` e : {s}

Γ,H; evφ(s) ` φ(e) : unit

If
Γ,H1 ` e1 : bool Γ,H2 ` e2 : τ Γ,H2 ` e3 : τ

Γ,H1;H2 ` if e1 then e2 else e3 : τ

Abs

Γ ;x : τ1; z : τ1
h−→ τ2, H ` e : τ2 h fresh

Γ,∅ ` λzx.e : τ1
µh.H−−−→ τ2

App

Γ,H1 ` e1 : τ ′
H3−−→ τ Γ,H2 ` e2 : τ ′

Γ,H1;H2;H3 ` e1e2 : τ

Let
Γ,H ` e[v/x] : τ

Γ,H ` letx = v in e : τ

Fig. 4. λc
hist logical typing rules

the history type H in judgements represents the set of histories that may arise
during execution of e; this intuition is formalized in Corollary 2.7. For example,
with f defined as in Sect. 2.1, the following judgements are derivable:

∅, ε ` f : bool
µh.ev1(c)|ev2(c);h−−−−−−−−−−−→ unit

∅, (µh.ev1(c) | ev2(c);h); ev3(c′) ` f(false); ev3(c′) : unit

We include let-polymorphism in the form of a let-expansion typing rule. This
approach, while less efficient in practice, significantly simplifies this presentation.
A typing Γ,H ` e : τ is valid iff it is derivable, and if H is valid in the interpre-
tation defined in the next section. We note that the addition of history effects
is a conservative extension to the underlying type system: by using weakening
before each if-then-else typing, any derivation in the underlying history-free type
system may be replayed here.

2.3 Interpretation of History Types

As alluded to previously, the interpretation of a history type is, roughly, a set of
histories. More accurately, we define the interpretation of history types as sets of
traces, which include a ↓ symbol to denote termination. Traces may be infinite–
appropriately, since we analyze programs which may not terminate.

6 Christian Skalka and Scott Smith

Definition 2.1. Our interpretation of histories will be defined via strings (called
traces), denoted θ, over the following alphabet:

a ::= ev(c) | ε | ↓

Sets of traces are obtained from history types by viewing the latter as programs
in a simple nondeterministic transition system:

Definition 2.2. The history transition relation is defined as follows:

ev(c)
ev(c)−−−→ ε H1|H2

ε−→ H1 H1|H2
ε−→ H2 µh.H

ε−→ H[µh.H/h]

ε;H ε−→ H H1;H2
a−→ H ′

1;H2 if H1
a−→ H ′

1

We may formally determine the sets of traces associated with a closed history
type in terms of the transition relation:

Definition 2.3. The interpretation of histories is defined as follows:

JHK = {a1 · · · an | H
a1−→ · · · an−−→ H ′} ∪ {a1 · · · an ↓ | H

a1−→ · · · an−−→ ε}

The question JH1K = JH2K is in fact undecidable: histories are a generalization
of BPA’s (basic process algebras), and their trace equivalence is known to be
undecidable [3].

The validity of a history is then based on the validity of the assertion events
that occur in traces in its interpretation. In particular, for any given predicate
event in a trace, that predicate must hold for the immediate prefix trace that
precedes it. The relevant definitions are as follows:

Definition 2.4. We say that a history H is valid iff for all a1 · · · anevφ(c) in
JHK it is the case that Π(φ(c)(a1 · · · an)) holds. A type judgement Γ,H ` e : τ
is valid iff it is derivable and H is valid.

We now observe several significant properties of the type system defined
above. Since failure of predicate checks at run-time results in stuck expres-
sions, soundness of our analysis can be stated via type safety (Theorem 2.6) and
progress (Theorem 2.5) results. The formalization of our basic intuition about
history types, that they approximate run-time histories, falls out as a corollary
of the Lemmas preceding progress and type safety, so we also state that corollary
here as a fundamental property of the system (Corollary 2.7). Proofs are omitted
for lack of space.

Theorem 2.5 (Progress). If Γ,H ` e : τ is derivable and η, e is irreducible
with η;H valid, then e is a value.

Theorem 2.6 (History Type Safety). Well-typed expressions don’t go wrong
in λc

hist.

Corollary 2.7. If Γ,H ` e : τ and ε, e→? η, v then η ∈ JHK.

History Types and Verification 7

3 Dynamic Constants

So far, we have considered events and predicates parameterized by statically
declared constants. While this is useful, it falls short of capturing dynamically
generated constants, which are common in programming languages, and are
often important elements of access control models in particular. For example, a
common property of previous language systems is the guarantee that files are
open before they are read. We can enforce this as follows; first, given a function
open (resp. close) that opens (resp. closes) files, define a function open ′ (resp.
close ′) that appends an evopen (resp. ev close) event to the history:

open ′ , λx.evopen(x); open(x) close ′ , λx.ev close(x); close(x)

Then, define a predicate φopen that checks for the appropriate property: φopen(c)(η)
iff there is an evopen(c) on η with no ev close(c) following it. We may then define
a read ′ function that only reads open files:

read ′ , λx.φopen(x); read(x)

However, our basic calculus is inadequate for a realistic model, in that new
files may be dynamically allocated in practice, while constants cf in the basic
system must be statically declared in the basic calculus. There are numerous
other examples from practice, where dynamically generated program entities are
relevant to the program security analysis. Thus, we introduce extensions to the
basic language semantics and type system for dynamic generation of constants,
yielding the λhist variant λζ

hist. Generative constants are also developed in [9],
which inspired us to include them; our rules are in a novel format which we
believe is simpler and more direct than the ones in the aforementioned paper.

3.1 Language Extensions

To obtain dynamic constants in λζ
hist, we make a simple extension to the syntax

and operational semantics of λc
hist. Specifically, we extend the language of expres-

sions e with a construct for dynamically generating fresh constants, new x in e.
This expression form is equipped with the following semantics:

η, new x in e→ η, e[c/x]c fresh (gen)

3.2 Logical Typing Extensions

Now we extend the λc
hist type system to analyze dynamic constants in λζ

hist.
We differentiate between types of declared constants and dynamically generated
constants, via the use of a new sort of singleton variables ζ ∈ Vζ , where Vζ is
denumerable and disjoint from the variable sets defined previously: the singletons
s are either variables α, fresh constants ζ, or fixed constants c. In the type
analysis, any dynamically generated constant will be assigned a {ζ} type. Since
functions may generate fresh constants within their scope with the new x in e

8 Christian Skalka and Scott Smith

New
Γ ;x : {ζ}, H ` e : τ ζ fresh

Γ,H ` new x in e : τ

Abs2
Γ ;x : τ1, H ` e : τ2 ζ̄ ∩ fvζ(Γ) = ∅

Γ, ε ` λx.e : ∇ζ̄.τ1
H−→ τ2

Abs1

Γ ;x : τ1; z : τ1
h−→ τ2, H ` e : τ2 ζ̄ ∩ fvζ(Γ) = ∅ fvζ(τ1, τ2)− fvζ(Γ) = ∅

Γ,∅ ` λzx.e : τ1
µh.∇ζ̄.H−−−−−−→ τ2 h fresh

App

Γ,H1 ` e1 : ∇ζ̄.τ ′ H3−−→ τ Γ,H2 ` e2 : τ ′

Γ,H1;H2;H3[ζ̄
′/ζ̄] ` e1e2 : τ [ζ̄′/ζ̄] ζ̄′ fresh

Fig. 5. Logical type rules for generative constants in λζ
hist

construct, we redefine functions types as ∇ζ̄.τ1
H−→ τ2. Here, ζ̄ may occur free

in τ1, H, or τ2; we write fvζ(τ) to denote the set of free variables of this sort
in τ . The vector ζ̄ specifies the types of constants that will be freshly generated
by application of the function, and will themselves be freshly instantiated in
typings. For brevity, we write τ H−→ τ ′ for ∇∅.τ H−→ τ ′.

We also extend the language of history types with a similar binding construct,
∇ζ̄.H. We use this form of binding in history annotations to yield greater flex-
ibility in the type system, an issue that is discussed in more detail below. The
history transition relation is extended to accommodate this new form:

∇ζ̄.H ε−→ H[c̄/ζ̄] c̄ fresh

Interpretation of histories, JHK, is defined as before. The necessary updates to
the logical type derivation rules are given in Fig. 5. We must restrict ∇-binding
for recursive function types in Abs1 to gain a sound rule: with this weaker rule,
a recursive function cannot itself return a singleton type {ζ} for a constant ζ
generated by the function. The ζ can occur in H, however, and so a bound
µh.∇ζ̄.H is placed on H. For nonrecursive functions, the more general Abs1
rule may be used, which allows the return type to be a fresh {ζ}. Note that
the App rule yields fresh ζ̄, ensuring the type system tracks “newness” when
new-constant-generating functions are used.

Returning to our previous example, and assuming the same definition of
open ′, we can now imagine a function openfresh that dynamically generates a
new file, and opens it; the type of this function will incorporate ζ variables to
represent the constant freshly generated in its scope:

openfresh , λ .new x in open ′(x) : ∇ζ.unit
evopen(ζ)−−−−−→ {ζ}

The application rule then ensures that fresh ζ variables are generated at every
application point of openfresh. For example, a function that uses openfresh twice

History Types and Verification 9

within its scope will be assigned a history type that reflects the generation of
two fresh constants:

f , λ .openfresh(); openfresh() : ∇ζ1ζ2.unit
evopen(ζ1);evopen(ζ2)−−−−−−−−−−−−→ {ζ2}

Note also that the return type of f correctly distinguishes the returned fresh
constant.

4 Type Inference

We define a type inference algorithm for the more expressive generative constant
theory λζ

hist. Selected type inference rules are given in Fig. 6. The type inference
system is a descendent of Milner’s algorithm W, presented in the form of a ruleset
directly invoking the unification algorithm Uτ defined below.

The rules are generally the obvious variations on the logical typing rules of
Figure 5; one exception is App/AppLet: there are two application rules, the
former is always applicable but unification will fail for the case the function
returns a fresh ζ, i.e. if the return type is {ζ}. If a function has been concretely
defined (say via let), the actual type will be present at application and the more
accurate AppLet may be used which allows for the case of functions returning
freshly generated constants. The weaker App still allows functions to generate
fresh constants, since h there can unify to e.g. h = ∇ζ.ev(ζ), but this ζ is
bound in the history alone and thus cannot occur in the return type. We don’t
consider this restriction that significant in practice, but it is the (only) source of
incompleteness; we show below that the ∇-free theory is complete.

4.1 Type Unification

The type unification algorithm is given in Figure 7; functions Uτ , UΓ and MH

are defined to unify types, type environments, and histories, and are implicitly
symmetric. It assumes each variable ζ in a ∇-bound in the original derivation is
unique and distinct from any free ζ. And, we assume there a predicate bound(ζ)
that holds iff ζ is bound and not free. The substitution ψ produced, when applied,
assumes ∇ does not bind ζ̄.

For histories, we take advantage of the | operator and simply merge them
to make a disjunction of two histories. This merge is semantically sound and
complete; unification of histories is inappropriate because histories may be struc-
turally different but of equivalent meaning.

Lemma 4.1 (Soundness of type inference). Suppose Γ,H `W e : τ then,
Γ,H ` e : τ is derivable.

The inference algorithm is not complete, but in only one respect: functions
returning fresh constants in their return types, {ζ}, cannot be used in a fully
higher-order manner. For ζ-free λc

hist, we now show a principal type property and
thus completeness. The histories produced in type derivations conform to those

10 Christian Skalka and Scott Smith

Abs1

Γ ;x : τ ′0; z : τ ′′0
h−→ τ0, H `W e : τ ζ̄ ∩ fvζ(ψ(Γ)) = ∅

(τ ′, ψ1) = Uτ (τ ′0, τ
′′
0) (τ ′, ψ) = Uτ (ψ1(τ0), ψ(τ)) fvζ(ψ(τ))− fvζ(ψ(Γ)) = ∅

Γ, ε `W λzx.e : τ ′0
µh.∇ζ̄.H−−−−−−→ τ ′

Abs2
Γ ;x : τ,H `W e : τ ′ ζ̄ ∩ fvζ(Γ) = ∅

Γ, ε `W λx.e : ∇ζ̄.τ H−→ τ ′

App
Γ1, H1 `W e1 : τ1 Γ2, H2 `W e2 : τ2

t, h fresh (τ, ψ1) = Uτ (τ1, τ2
h−→ t) (Γ, ψ) = UΓ (ψ1(Γ1), ψ1(Γ2))

Γ, ψ(H1;H2;h) `W e1 e2 : ψ(t)

AppLet

Γ1, H1 `W e1 : ∇ζ̄.τ ′ H3−−→ τ Γ2, H2 `W e2 : τ ′′

ζ̄′ fresh (τ ′′′, ψ) = Uτ (τ ′, τ ′′) (Γ, ψ) = UΓ (ψ1(Γ1), ψ1(Γ2))

Γ, ψ(H1;H2;H3)[ζ̄
′/ζ̄] `W e1 e2 : ψ(τ)[ζ̄′/ζ̄]

Fig. 6. Selected type inference rules for λζ
hist

inferred, with the exception that the weakening rule could have been used in a
derivation and not used in inference (in inference, weakening is used only at con-
ditionals). We define a relation H ≤weak H

′ indicating H ′ can be obtained from
H through a series of subterm replacements of H0 with (H0|H ′

0) for arbitrary
H ′

0.

Lemma 4.2 (Completeness of λc
hist type inference). If Γ,H ` e : τ in

λc
hist, then Γ ′,H ′ `W e : τ ′ and for some ψ, ψ(Γ ′) = Γ , ψ(H ′) ≤weak H, and
ψ(τ ′) = τ .

Here is an example of history merging:

hoif = λg1λg2. if . . . then (λx.ev1; g1()) else (λx.ev2; g2())

The type inferred for this program is

∀h1h2t1t2t.(t1
h1−→ t) ε−→ (t2

h2−→ t)
(ev1;h1)|(ev2;h2)−−−−−−−−−−−→ t

—there is no need to force the then- and else-histories to match, since their
disjunction can be formed.

History Types and Verification 11

Uτ (τ, τ) = (τ, ∅)
Uτ (t, τ) = (τ, {t 7→ τ})
Uτ (∇ζ̄.τ1

H−→ τ2,∇ζ̄′.τ ′1
H′
−−→ τ ′2) =

let (τ ′′1 , ψ1) = Uτ (τ1, τ
′
1) in

let (τ ′′2 , ψ2) = Uτ (ψ1(τ2), ψ1(τ
′
2))

in (τ ′′1
MH (H,H′[ζ̄/ζ̄′])−−−−−−−−−−→ τ ′′2 , ψ2)

Uτ ({s}, {s′}) =
if s = s′ then ({s}, ∅)
else if s = α then ({s′}, {α 7→ {s′}})
else if s′ = α then ({s}, {α 7→ {s}})
else fail

UΓ (∅, Γ) = (Γ, ∅)
UΓ (x : τ1;Γ1, x : τ2;Γ2) =

let (τ, ψ) = Uτ (τ1, τ2) in
let (Γ, ψ′) = UΓ (ψ(Γ1), ψ(Γ2)) in

(x : τ ;Γ, ψ′)
UΓ (x : τ1;Γ1, Γ2) for x 6∈ dom(Γ2) =

let (Γ, ψ′) = UΓ (ψ(Γ1), ψ(Γ2)) in
(x : τ1;Γ, ψ

′)

MH(h,H) = (H, {h 7→ H})
MH(H1, H2) = (H1 | H2, ∅)

Fig. 7. Type unification algorithm

5 A Verification Framework

In Definition 2.4, validity of any history type H has been specified in logical
form, with respect to the set of trace prefixes in JHK. However, this definition
is clearly insufficient as a decision procedure, since JHK may be infinite. Thus,
to algorithmically verify history types, we must supply some procedure which is
sound with respect to this definition of validity. To this end, we will take a model-
checking approach, via branching-time logic, in keeping with our interpretation
of history types as branching-time labeled transition systems (LTS).

While a plethora of model-checking logics are available, we use the modal
µ-calculus [3] because it is syntactically close to histories H. Further, efficient
techniques for the automated verification of µ-calculus formulas on BPA pro-
cesses (also known as context-free processes) have been developed [3, 12]; his-
tory types in fact correspond to BPA processes, and so these decision procedures
may be directly applied in our framework. We lack the space here to prove the
correspondence of BPA processes α and history types H, but their syntax and
semantics are virtually identical; both denote process algebras lacking paral-
lelism and synchronization. The ∇ζ.H histories are the one form that have no
BPA analogue, and so the results here apply to non-recursive ∇ζ.H only, which
can without loss of generality be replaced by H[c/ζ] for fresh c. The appropriate
generalization of our model-checking theory to fully handle ∇ζ.H is future work.

The syntax of the µ-calculus is:

φ ::= x | true | false | 〈a〉φ | [a]φ | ¬φ | φ ∨ φ | φ ∧ φ | µx.φ | νx.φ

We use the so-called standard interpretation of µ-calculus formulae [12]: a rela-
tion α φ meaning φ holds in a BPA state α. For brevity we omit the details
of this interpretation . In our interpretation, BPA processes are replaced by his-
tories H and so the relation is H φ. From [12], we have the fact that this
relation is decidable.

12 Christian Skalka and Scott Smith

We restrict our attention to formulae which have consistent meanings both at
“compile time” and at “run time”. This is a subtle issue, because history types
are branching time, and run-time histories are linear-time, but we want our
assertions to be the same statically and dynamically. The desirable linearizable
φ are those for which branching-time truth implies linear-time truth: if a fact
holds during typechecking, it will hold at runtime.

Definition 5.1. We say that φ is linearizable iff it contains no positive occur-
rences of subformulae 〈a〉φ′ or νx.φ′ in φ.

Both of the non-linearizable forms have “exists a path” semantics, and thus
branching-time truths may not be linear-time truths. Any all-paths assertion
can be expressed in a linearizable φ, and so the logic is very expressive, as will
be shown from examples.

Lemma 5.2 (Linearization). If φ is linearizable and η ∈ JHK, then H φ
implies η φ.

Note we are implicitly coercing run-time history η to its corresponding linear
compile-time history here. This Lemma directly follows by induction on the
standard semantics of H φ.

The framework of Section 2 is officially instantiated to use the µ-calculus as
its logic by defining the abstract formulae φ(c) there to range over linearizable
µ-calculus formulae φ parameterized by c. These φ can in addition contain new
modal formulae [Now]φ′ and 〈Now〉φ′ that mark “now”, the point in execution
at which the formula is being checked for validity. These new formulae are just
shorthand: in fixed formula φ, [Now] (resp. 〈Now〉) hereafter is assumed to be
replaced by [evφ] (resp. 〈evφ〉). We then may define Π as (Π(φ)(c))(η) ⇔ η
φ(c).

For any assertion φ(c) and history type H containing only the events
ev1(c1), . . . , evn(cn), define:

〈.〉φ , 〈ev1(c1)〉φ ∨ · · · ∨ 〈evn(cn)〉φ
occurs(φ(c)) , µx.〈.〉x ∨ 〈evφ(c)〉true

Putting together Definition 2.4 and Lemma 5.2, we may directly obtain:

Corollary 5.3 (Logical Soundness). If H φ(c) ∨ ¬occurs(evφ(c)) for all
φ(c) occurring in e, then H is valid.

Thus, combining this with Theorem 2.6 and Corollary 2.7, we know that any
program for which a type is inferred and embedded assertions model-checked
will have all assertions succeed at run-time.

6 A Stack-based Variation

In this section we sketch a variation on the framework of the previous sections
that defines a stack-based framework instead of a history-based framework. In

History Types and Verification 13

this variation, instead of keeping track of all events, only events for functions
on the current call stack are kept. Assertions φ are then assertions at run-time
about the active event sequence, not all events. The changes to the previous
sections are mostly minor, and for brevity we only summarize the differences.

We will use e.g. ηs to refer to the stack-based variant of a previous definition,
in this case of a history η.

– The operational semantics rules are identical except the (now stack) ηs is
checkpointed at function call, and restored to the checkpointed value at
function return.

– The type rules are identical in the core theory; in the generative constant
theory, Abs2 is modified so the resulting function has history effect µhd.H
for a dummy variable hd,and not just H. With this change, µ will serve to
demarcate the scope of all functions.

– The history types H still represent histories, and not stacks. But, there is a
simple translation possible to give a stack view of H, removing all inactive
functions from H. This function is called stackify(H) and is defined below.

– Then, JHKs is defined to be Jstackify(H)K.
– Using these definitions, the key results (Theorems 2.5 and 2.6, Corollary 2.7,

Lemma 5.2, and Corollary 5.3) can be replayed in the stack-based variant.

The key technical modification is the definition of stackify :

Definition 6.1. The stackify algorithm is defined inductively as follows.

stackify(ε) = ε

stackify(ε;H) = stackify(H)
stackify(ev(c);H) = ev(c); stackify(H)

stackify(h;H) = h|stackify(H)
stackify(H1|H2;H) = stackify(H1;H)|stackify(H2;H)

stackify((µh.H1);H2) = (µh.stackify(H1))|stackify(H2)

(This stackify algorithm is not quite optimal; since the optimal definition is less
intuitive we give a simpler conservative one here.)

Observe that the range of stackify consists of history types that are all tail-
recursive; thus stacks are finite-state transition systems and more efficient model-
checking algorithms are possible for stacks than for general histories.

An example of stackification, for a, b, c, d representing arbitrary events, is as
follows:

stackify(a;µx.b; c;µx.c; (ε|(d;x; a)))=(a; ((µx.b; c)|(µx.(c; ε)|(c; d;x)|(c; d; a))))|ε

7 Application: History-based access control

History-based access control is a generalization of Java’s notion of stack inspec-
tion to take into account all past events, not just those on the stack [1]. Our

14 Christian Skalka and Scott Smith

language is perfectly suited for the static typechecking of such security policies.
In the basic history model of [1], some initial current rights are given, and with
every new activation the static rights of the that activation are automatically
intersected with the current rights to generate the new current rights. Unlike
stack inspection, removal of the activation does not return the current rights to
its state prior to the activation.

Before showing how this form of assertion can be expressed in our language,
we define the underlying security model. We assume all code is annotated with
a “principal” identifier p, and assume an ACL policy A mapping principals p to
resources r(c) for which they are authorized. An event evp is issued whenever a
codebase annoted with p is entered. A demand of a resource r with parameter
c, φdemand,r(c), requires that all invoked functions posess the right for that re-
source. This general check may be expressed in our language as follows (we will
abbreviate events ev i by their subscripts):

φdemand,r(c) , ¬(µx1.〈.〉x1(µx2.〈p¬r(c)〉x2 ∨ 〈Now〉true))

where, given parameterized resource r(c) and access control list A specifying
that principals p1, ..., pj are not authorized for r(c), we define

〈p¬r(c)〉φ , 〈p1〉φ ∨ · · · ∨ 〈pj〉φ

Assertion φdemand,r(c) forces all code principals invoked thus far to have the
rights for r(c). For example, validity of the following requires r(c) ∈ A(p1) ∩
A(p2):

Γ, p1; p2;φdemand,r(c) ` p1; (λx.p2;φdemand,r(x)) c : unit

The model in [1] also allows for a combination of stack- and history-based
properties, by allowing the amplification of a right on the stack: it stays active
even after function return. Such assertions can be expressed in our framework
using a combination of stack- and history-based assertions.

8 Application: Stack inspection

Java stack inspection [16, 11, 10] uses an underlying security model of principals
and resources as defined in the previous section. One additional feature of Java
is that any principal may also explicitly enable a resource for which they are
authorized. When a function is activated, its associated principal identifier is
pushed on the stack, along with any resource enablings that occur in its body.
Stack inspection for a particular resource r(c) then checks the stack for the
enabling of r(c), searching frames from most to least recent, and failing if a
principal unauthorized for r(c) is encountered before the enabling.

Stack inspection can be modeled in the stack-based variant of our program-
ming logic defined in Section 6. Rather than defining the general encoding, we
develop one particular example which illustrates all the issues. Consider the
following function checkit:

checkit , λx.p:system;φinspect,r:filew(x)

History Types and Verification 15

Every function upon execution first issues an owner (principal) event, in this
case p:system indicating “system” is the principal p that owns checkit. The func-
tion takes a parameter x (a file name) and inspects the stack for the “filew”
resource with parameter x, via embedded µ-calculus assertion φinspect,r:filew(x).
This assertion is defined below; it enforces the fact that all functions on the call
stack back to the nearest enable must be owned by principals p that according
to ACL A are authorized for the r:filew(x) resource.

Now, to model resource enabling we use a special parameterized event enabler(x),
indicating resource r(x) is temporarily enabled. We illustrate use of explicit en-
abling via an example “wrapper” function enableit, owned by say the “accoun-
tant” principal p:acct, that takes a function f and a constant x, and enables
r:filew(x) for the application of f to x:

enableit , λf.p:acct; (λx.p:acct; enabler:filew(x); let y = f(x) in y)

The definition of φinspect,r(c), for fixed r(c), is generalized over parameterized
resources r(c). For history typeH containing only the events ev1(c1), . . . , evn(cn),
and parameterized resource r(c), define the following:

{ev ′1(c′1), . . . , ev ′m(c′m)} = {ev1(c1), . . . , evn(cn)} \dom(A)

We also define the following µ-calculus formula abbreviations:

〈¬ev i(ci)〉φ , 〈ev1(c1)〉φ ∨ · · · ∨ 〈ev i−1(ci−1)〉φ ∨ 〈ev i+1(ci+1)〉φ ∨ · · · ∨ 〈evn(cn)〉φ
〈p̄〉φ , 〈ev ′1(c′1)〉φ ∨ · · · ∨ 〈ev ′m(c′m)〉φ

Then, φinspect has two parts: first, any r(c) enabling is valid:

φenable-ok,r(c) , ¬(µx1.〈.〉x1 ∨ 〈p¬r(c)〉(µx2.〈p̄〉x2 ∨ 〈enabler(c)〉true))

And, we must check that stack inspections for r(c) are valid with the following
µ-calculus formula:

φinspect-ok,r(c) , ¬(µx1.(〈.〉x1 ∨ 〈p¬r(c)〉µx2.(〈¬enabler(c)〉x2 ∨ 〈Now〉true)))

φinspect,r(c) is then defined as φenable-ok,r(c)∧φinspect-ok,r(c). Observe this formula
is linearizable.

Returning to our previous example expressions checkit and enableit, the fol-
lowing most general types are inferred in our system:

checkit : ∀α.{α}
p:system;inspectr:filew(α)
−−−−−−−−−−−−−−−−−−→ unit

enableit : ∀αht.({α} h−→ t)
p:acct−−−−→ {α}

p:acct;enabler:filew(α);h
−−−−−−−−−−−−−−−−−→ t

The stackification of the application (enableit checkit (/accts/ledger.txt)) will
then generate the following history:

p:acct; enabler:filew(/accts/ledger.txt); p:system; inspectr:filew(/accts/ledger.txt)

16 Christian Skalka and Scott Smith

Assuming that both p:system and p:acct are authorized for r:filew(/accts/ledger.txt)
in A, verification will clearly succeed on this expression. On the other hand,
stackification of the application checkit(/accts/ledger.txt) will generate the fol-
lowing history:

p:system; inspectr:filew(/accts/ledger.txt)

for which verification will fail: there is no required enabler:filew(/accts/ledger.txt)
on the stack.

9 Contributions and Related Work

We have presented a new type effect system, an inference algorithm for the
system that is (nearly) complete, and an algorithm for automatically verifying
assertions made about the effects. With this system, users merely need to deco-
rate code with assertions about past events, and the system will automatically
verify those assertions without user intervention.

The original goal of our project was to build the first system to statically
model the parameterized privileges of Java stack inspection, and also to allow
the static checking of general runtime history assertions for enforcing security
policies. We believe we have succeeded in this regard. But, the system we have
produced is not particularly biased toward security properties, and thus may be
useful in other domains (e.g., debugging).

The type system itself makes several contributions in its combination of ex-
pressiveness and completeness. The effect system conservatively extends effect-
free typing, so the effects will not “get in the way” of typing. We give a new
system for typing generative constants ζ that is simple but powerful. The infer-
ence algorithm merges histories H in a lossless manner instead of attempting to
(partially) unify them.

Our system supports general model checking properties of inferred effect
types. Related systems either lack automatic assertion checking [6], or allow
checking of only a limited range of properties [7]. One technical hurdle we had
to overcome was how the branching-time nature of the effectsH can be reconciled
with the linear nature of events η at run-time; the linearizable formulae bridge
this gap.

In order to elegantly express stack inspection we needed to use a notion of
contextual assertion; we believe this form of assertion will be useful in other
contexts, side-by-side with global assertions. The systems that support global
assertions alone lack the ability to focus an assertion on a particular program
point, and thus assertions must be more complex. Our framework can in fact
express global assertions: if H φ for φ not using the contextual 〈Now〉/[Now],
a global property φ holds.

9.1 Related Work

While there are several related type systems, none of them directly solve the
problems we are interested in, such as the static typing of parameterized priv-
ileges in Java stack inspection. None of the systems incorporate our contextual

History Types and Verification 17

form of assertion, and none are integrated with a decision prodecure for auto-
matic verification of assertions. The two systems which are technically the closest
are [2, 6].

Our type effect system is related to the formulation in [2]; their system lacks
our singletons, generative constants, and contextual assertions, and includes a
theory of atomic subtyping which we do not. Their effects have a grammar
remarkably close to our history types H. Since they lack assertions, they also
do not use their system for any automatic verification. Their approach has one
significant drawback: the inference algorithm given is not “sound enough” – it is
formally proved sound, but the soundness property doesn’t preclude inconsistent
constraints such as ev = ev ′ from being present. The hoif example at the end
of Section 4 is one program for which their system will infer an inconsistent
constraint set; our algorithm thus has a stronger soundness property.

The system of [6] is based on linear types and not effect types. Their sys-
tem allows multiple, dynamically generated, histories. So for instance a unique
history can be created for each file opened. This feature seems useful, but it
introduces several complexities; for example, an independent escape analysis
procedure must be invoked by the type rules. We can achieve similar expressive-
ness in our theory by using one history stream, but creating a unique singleton
to label each separate stream of events; the openfresh example at the end of
Section 3 shows how a fresh constant can be associated with each opened file
in our theory. Their type inference algorithm is not complete, more properly it
is unfinished—they provide no particular mechanism for expressing or deciding
assertions. Our history types can easily be seen to form a BPA; their analogous
usages are more complex (for example including parallelism) and since they are
not prima facie BPA’s it is not known whether model-checking will be possible
or feasible. Their system lacks a form of contextual assertion and so it would
also not be directly applicable to stack inspection.

In the domain of stack inspection, [11, 10] present constraint-based type
systems that statically verify stack soundness. [7] presents a static analysis that
model checks a control flow analysis using the CTL logic to express assertions,
and they can statically verify the correctness of stacks. These aforementioned
systems cannot statically check parameterized privileges, and the analyses are
specialized to the stack inspection question and do not take a more general
approach as this paper does.

Acknowledgements

Thanks to Rao Kosaraju for discussions on grammar decision problems, and Fei
Lu for ideas about model-checking histories.

References

[1] Mart́in Abadi and Cédric Fournet. Access control based on execution history. In
Proceedings of the 10th Annual Network and Distributed System Security Sympo-
sium (NDSS’03), feb 2003.

18 Christian Skalka and Scott Smith

[2] T. Amtoft, F. Nielson, and H. R. Nielson. Type and Effect Systems. Imperial
College Press, 1999.

[3] O. Burkart, D. Caucal, F. Moller, , and B. Steffen. Verification on infinite struc-
tures. In S. Smolka J. Bergstra, A. Pons, editor, Handbook on Process Algebra.
North-Holland, 2001.

[4] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-
level software. In SIGPLAN Conference on Programming Language Design and
Implementation (PLDI01), pages 59–69, 2001.

[5] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of
Philosophical Logic Volume II — Extensions of Classical Logic, pages 497–604.
D. Reidel Publishing Company: Dordrecht, The Netherlands, 1984.

[6] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Conference
Record of POPL’02: The 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 331–342, Portland, Oregon, January 2002.

[7] T. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based security
properties. In Proceedings of the 1999 IEEE Symposium on Security and Privacy,
1999.

[8] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages, Orlando, Florida, pages 303–310. ACM Press, 1991.

[9] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory
of type refinements. In Proceedings of the the Eighth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’03), Uppsala, Sweden,
August 2003.

[10] François Pottier, Christian Skalka, and Scott Smith. A systematic approach to
static access control. In David Sands, editor, Proceedings of the 10th European
Symposium on Programming (ESOP’01), volume 2028 of Lecture Notes in Com-
puter Science, pages 30–45. Springer Verlag, April 2001.

[11] Christian Skalka and Scott Smith. Static enforcement of security with types. In
Proceedings of the the Fifth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’00), pages 34–45, Montréal, Canada, September 2000.

[12] B. Steffen and O. Burkart. Model checking for context-free processes. In CON-
CUR’92, Stony Brook (NY), volume 630 of Lecture Notes in Computer Science
(LNCS), pages 123–137, Heidelberg, Germany, 1992. Springer-Verlag.

[13] Chris Stone. Singleton types and singleton kinds. Technical Report CMU-CS-00-
153, Carnegie Mellon University, 2000.

[14] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California,
pages 162–173, Los Alamitos, California, 1992. IEEE Computer Society Press.

[15] David Walker. A type system for expressive security policies. In Conference Record
of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 254–267, Boston, Massachusetts, January 2000.

[16] Dan S. Wallach and Edward Felten. Understanding Java stack inspection. In
Proceedings of the 1998 IEEE Symposium on Security and Privacy, May 1998.

