
History Type Analysis

Christian Skalka
University of Vermont

skalka@cs.uvm.edu

Scott Smith
Johns Hopkins University

scott@cs.jhu.edu

ABSTRACT
Security abstractions in programming languages benefit from
the ability to base access control decisions on the temporal
context of program execution. In this paper we formalize the
notion of a history as a sequence of program events produced
during program execution, and which allows execution con-
texts to be precisely characterized. We define a language
λhist to model the incorporation of histories in evaluation,
and present a sound type analysis for statically verifying
program safety in the presence of histories. An approximate
type inference algorithm is defined, though inference in the
general case is shown to be undecidable.

1. INTRODUCTION
Programming language-based security models have a dis-

tinct advantage over other security domains, such as net-
works or smart cards, in which access control decisions are
made: in a programming language, there is an ability to base
access control decisions on the context of execution. This is
the case, since secure programs execute in trusted runtimes,
where the order of events can be tracked without possibility
of forgery. For example, stack inspection [10, 15] associates
authorization levels with regions of code, and ensures that
when any privilege is checked, the sequence of callers on the
call stack preceding the check are all authorized for that
privilege. History-based access control is another example
[1]: all execution events preceding the check must ensure
authorization for the checked privilege.

In this paper we develop a foundational theory of execu-
tion contexts. Following [1], we call these histories, and the
naming is intended to evoke this previous work, which makes
the case for histories as an efficient and natural foundation
for programming language-based security. Our theory is dis-
tinguished from [1] in that it is more general, serving as a
framework for any system of history-based access control,
rather than their particular approach. Also, we focus on
the development of relevant type systems, allowing history-
based properties to be statically verified; this constitutes the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

bulk of our presentation.

1.1 History-Based Specification
Fundamental to our approach is the notion of events that

occur during program execution, comprising a dynamic his-
tory, a stream of events having occurred so far. With an
explicit notion of history as a component of execution, it
is possible to specify history predicates that must hold at
certain program points, given the current history state: for
example, before reading a file, we can require that the exe-
cution history includes an “open” event for that file, or we
can require that a “read” privilege for that file was added
to the active security context in a stack inspection model.
Given our formalization of the semantics of histories and his-
tory predicate verification, we then construct a type system
which verifies abstract history properties statically, ensuring
safety of typable programs in this model.

Our work is most closely related to static systems for spec-
ifying program state changes and resource usage patterns [2,
8, 14, 4]. However, these systems all construct a top-level
specification for resource usage patterns; our approach, on
the other hand, is modal, in that assertions are made rela-
tive to the current program execution context, not the global
pattern of behavior. There are various benefits and draw-
backs to this modal approach, but it is highly suited to rea-
soning about access control policies, since these policies are
generally conceived as a gateway to pass through during
program execution. In the presence of type inference, there
is no need for programmers to specify global resource usage
patterns; instead they are inferred. One need only insert
assertions specifying requirements on run-time histories, a
natural and easy-to-use mechanism. The modal approach
also meshes well with partial/soft typing, in that some deci-
sions can be postponed until runtime: if a predicate cannot
be statically verified to hold, code can be inserted to enforce
a dynamic check.

There is a long tradition of modal assertions in programs,
beginning with Hoare Logic, and the modal aspect is made
explicit in e.g. Dynamic Logic [3]. Our logic differs from
these approaches in that past events, and the order in which
they occurred, may be considered in assertions.

1.2 Applications of History-Based Specifica-
tion

Our primary focus is on security applications. In Sect. 5
we show how stack inspection and history-based access con-
trol policies can be encoded in, and statically verified by,
our theory. These examples suggest that a variety of access
control policies can be specified and enforced in our system.

1

However, our approach is not necessarily biased toward ac-
cess control; for example, resource usage patterns can be
monitored, and audit trails can be precisely specified and
verified. Our system can also realize a generalization of the
<assert.h> C library, allowing assertions about sequences of
past events and static verification of these assertions. Since
the notion of history in computation is a basic one, it is easy
to imagine a wide range of applications.

1.3 The Technical Development
In the rest of the paper, we formalize our ideas in the

system λhist, which is developed via the definition of in-
creasingly expressive variants. We first define an operational
semantics of a basic language λc

hist with atomic events, his-
tories (event traces) in configurations, and a specification of
how predicates on histories are evaluated. We then develop
a sound logical type system that statically ensures validity
of all history checks at run-time. After the core λc

hist is pre-
sented, we define two different extensions, λι

hist which allows
multiple disinct history streams to be declared and local-
ized, and λζ

hist which supports dynamic constant generation
in a static type system. One advantage of our theory is it is
small and simple, but still quite expressive. Related theories
in this general area [4, 8] are comparatively complex.

A central result of this paper is that semantic equivalence
of histories is undecidable, even for simple histories in the
presence of recursion. This result characterizes the limita-
tions of the general approach. Nevertheless, we argue that
practical partial heuristics for unifying histories may be de-
fined, and we define a type inference algorithm for λζ

hist,
assuming the existence of these methods. Finally, we show
how stack inspection and history-based access control can
be modeled in λc

hist, demonstrating its usefulness.
The technical approach of this paper is most closely re-

lated to [4]; in particular, their notion of trace is similar to
our history, and their usages U are related to our history
types H. In other respects, the approaches differ signifi-
cantly, e.g. the global vs. modal strategies employed, as dis-
cussed above. Also, we use a notion of dynamic singleton
similar to the same in [8], rather than the dynamic resources
of [4].

2. THE LANGUAGE λhist

In this section we formally define our first variation of the
calculus λhist—its syntax and operational semantics, and
a sound static type analysis that incorporates a notion of
history. In subsequent sections we will extend the basic
system, but presenting core elements in isolation elucidates
the fundamental features of our approach.

2.1 Syntax and Semantics
The syntax and semantics of the basic λhist system, a

variation denoted λc
hist, are given in Fig. 1 and Fig. 2. We

assume the following syntactic sugar: ∧e1e2 , e1 ∧ e2, and
∨e1e2 , e1 ∨ e2. and JeKbool is the usual interpretation
of boolean expressions. Functions, written λzx.e, possess a
recursive binding mechanism where z is the self variable; we
may write λx.e for λzx.e if z is not free in e.

Among the atomic first-class values of the system are con-
stants c ∈ C, which we do not explicitly interpret. The set C
could be integers, for example, or IP addresses. Their signif-
icance in our system is as parameters of events and history
predicates. An event ev is a named entity parameterized by a

constant c (we treat only the unary case in this presentation,
but the extension to n-ary events is straghtforward). Or-
dered sequences of these events constitute histories η, which
maintain the sequence of events experienced during program
execution. History predicates P , also parameterized by a
constant, function just as their name suggests, and may be
used to assert desirable properties of histories: P (c)(η) ei-
ther holds or not.

Parameterization of events and predicates allows for a sig-
nificantly more fine-grained analysis of execution context,
as is illustrated in various examples below (especially in
Sect. 3). In the presentation of the system, predicates P
are left unspecified, but in later sections we discuss some
concrete examples. Logics for analyzing security properties
in execution contexts have recently been developed [5] that
give a good starting point for defining a syntax for P . In
some instances we may be interested in events and predi-
cates that have no parameters; in this case we will write
ev and P for ev(c) and P (c) respectively, where c is some
dummy constant.

The operational semantics is defined as a call-by-value
small step reduction relation → on configurations η, e, where
η is the history of run-time program events. We write →?

to denote the reflexive, transitive closure of →. Note that
in the event reduction rule, an event ev(c) encountered dur-
ing execution is added to the end of the history, while in the
check rule, the predicate P (c) is required to hold on the cur-
rent program history. In case the predicate fails, execution
is stuck.

For example, assuming the addition of the usual syntactic
sugar for sequencing of expressions, consider the following
function f :

f , λzx.if x then ev1 else ev2; z(true)

In the operational semantics, we have:

ε, f(false) →? ev2; ev1, ()

since the initial call to f will cause ev2 to be added to the
history, followed by a recursive call to f that hits its basis,
where event ev1 is encountered.

2.2 Logical Type System
In the type analysis, we are challenged to statically iden-

tify histories that result during execution, for which pur-
pose we introduce history types H (abusing nomenclature,
we may also refer to these as simply “histories” if the dis-
tinction is clear from context). In essence, any H soundly
approximates the history η generated by an expression dur-
ing execution, by representing a set of possible histories con-
taining at least η. A history type may therefore be an event
ev(c), or a sequencing of history types H1; H2, a nondeter-
ministic choice of history types H1|H2, or a µ-bound history
type µh.H which finitely represents the set of histories that
may be generated by a recursive function. History types may
also contain predicates P (c), allowing us to verify predicate
checks at the right points in history approximations. History
types are inspired by previous systems that analyze ordering
of events, including ordered linear logic [9], the control flow
based security logic of [5], and especially the resource usage
analysis of [4], which have a related typing construct called
usages that track the order and kind of resource accesses.

The syntax of types for λc
hist is given in Fig. 3. In addition

to histories, we include function types τ1
H−→ τ2, where H

2

c ∈ C atomic constants

b ::= true | false boolean values

v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | () values

e ::= v | e e | ev(e) | P (e) | if e then e else e | let x = v in e expressions

η ::= ε | ev(c) | η; η histories

E ::= [] | v E | E e | if E then e else e | ev(E) | P (E) evaluation contexts

Figure 1: λc
hist language syntax

η, (λzx.e)v → η, e[v/x][λzx.e/z] (β)

η,¬b → η, J¬bKbool (not)

η, b1 ∧ b2 → η, Jb1 ∧ b2Kbool (and)

η, b1 ∨ b2 → η, Jb1 ∨ b2Kbool (or)

η, if true then e1 else e2 → η, e1 (if1)

η, if false then e1 else e2 → η, e2 (if2)

η, let x = v in e → η, e[v/x] (let)

η, ev(c) → η; ev(c), () (event)

η, P (c) → η, () if P (c)(η) (check)

η, E[e] → η′, E[e′] if η, e → η′, e′ (context)

Figure 2: λc
hist language semantics

represents the histories that may result by use of the func-
tion. Events are side-effects, and so these function types are
a form of effect type [6, 13]. Additionally, since events and
predicates are parameterized in history types, we must be
especially accurate with respect to our typing of constants.
Thus, we adopt a very simple form of singleton type {c}
[12], where only atomic constants can have singleton type.
Types contain three sorts of variables; regular type variables
t, singleton type variables α, and history type variables h.
We let φ range over variable substitutions, heterogeneous in
these sorts, with the restriction that substitutions must be
sort-consistent—i.e., only history types may be substituted
for history type variables, etc.

Type derivation rules for judgements of the form Γ, H `
e : τ are given in Fig. 4, where Γ is an environment of
variable typing assumptions. Intuitively, the history type
H in judgements represents the set of histories that may
arise during execution of e; this intuition is formalized in
Corollary 1. For example, with f defined as in Sect. 2.1, the
following judgements are derivable:

∅, ε ` f : bool
µh.ev1|ev2;h−−−−−−−−→ unit

∅, (µh.ev1 | ev2; h); ev3 ` f(false); ev3 : unit

We include let-polymorphism in the form of a let-expansion
typing rule. This approach, while less efficient in practice,
significantly simplifies this presentation. A typing Γ, H `
e : τ is valid iff it is derivable, and if H is valid in the
interpretation defined in the next section.

2.3 Interpretation
As mentioned previously, the interpretation of a history

type is, roughly, a set of histories. More accurately, we define
the interpretation of history types as sets of traces, which
may include predicates as well as events, and a ↓ symbol to
denote termination.

Definition 1. Our interpretation of histories will be de-
fined via strings (called traces), denoted θ, over the following
alphabet:

a ::= ev(c) | P (c) | ε | ↓

Sets of traces are obtained from history types by viewing the
latter as programs in a simple nondeterministic transition
system:

Definition 2. The history transition relation is defined
as follows:

ev(c)
ev(c)−−−→ ε

P (c)
P (c)−−−→ ε

H1|H2
ε−→ H1

H1|H2
ε−→ H2

µh.H
ε−→ H[µh.H/h]

ε; H
ε−→ H

H1; H2
a−→ H ′

1; H2 if H1
a−→ H ′

1

We may formally determine the sets of traces associated with
a closed history type in terms of the transition relation:

Definition 3. The interpretation of histories is defined

3

α ∈ Vs, t ∈ Vτ , h ∈ VH variables

s ::= α | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit types

H ::= ε | h | ev(s) | P (s) | H; H | H|H | µh.H history types

Γ ::= ∅ | Γ; x : τ type environments

Figure 3: λc
hist language type syntax

Var
Γ, ε ` x : Γ(x)

Bool
Γ, ε ` b : bool

Unit
Γ, ε ` () : unit

And
Γ, ε ` ∧ : bool

ε−→ bool
ε−→ bool

Or
Γ, ε ` ∨ : bool

ε−→ bool
ε−→ bool

Not
Γ, ε ` ¬ : bool

ε−→ bool
Const
Γ, ε ` c : {c}

Event
Γ, H ` e : {s}

Γ, H; ev(s) ` ev(e) : unit

Check
Γ, H ` e : {s}

Γ, H; P (s) ` P (e) : unit

If
Γ, H1 ` e1 : bool Γ, H2 ` e2 : τ Γ, H3 ` e3 : τ

Γ, H1; H2|H3 ` if e1 then e2 else e3 : τ

Abs

Γ; x : τ1; z : τ1
h−→ τ2, H ` e : τ2 h fresh

Γ, ∅ ` λzx.e : τ1
µh.H−−−→ τ2

App

Γ, H1 ` e1 : τ ′
H3−−→ τ Γ, H2 ` e2 : τ ′

Γ, H1; H2; H3 ` e1e2 : τ

Let
Γ, H ` e[v/x] : τ

Γ, H ` let x = v in e : τ

Figure 4: λc
hist logical typing rules

as follows:

JHK =

{
a1 · · · an | H

a1−→ · · · an−−→ H ′
}

∪{
a1 · · · an ↓ | H

a1−→ · · · an−−→ ε
}

Any history interpretation is clearly prefix-closed, and any
infinite trace is approximated by the set of its finite prefixes.

The validity of a history is then based on the validity
of the predicates that occur in traces in its interpretation.
While the definition of predicates is abstract in our system,
it is always the case that predicates apply to the histories
that precede them; so for any given predicate in a trace, we
check its validity with respect to the events in its immediate
prefix trace that precede it. The relevant definitions are as
follows:

Definition 4. We obtain a history from a ↓-free trace θ,
written θ̂, inductively as follows:

ˆev(c) = ev(c)

ˆP (c) = ε

ˆθ1θ2 = θ̂1; θ̂2

Definition 5. We say that a history H is valid iff for all
a1 · · · anP (c) in JHK it is the case that P (c)(̂a1 · · · an) holds.
A type judgement Γ, H ` e : τ is valid iff it is derivable and
H is valid.

2.4 Properties

In this section, we observe several significant properties
of the type system defined above. Since failure of predicate
checks at run-time results in stuck expressions, soundness of
our analysis can be stated via type safety (Theorem 3) and
progress (Theorem 2) results. The formalization of our ba-
sic intuition about history types, that they approximate run-
time histories, falls out as a corollary of the Lemmas preced-
ing progress and type safety, so we also state that corollary
here as a fundamental property of the system (Corollary 1).

In addition to these positive results, we also report two
important negative results. First, we demonstrate that his-
tory types do not have a principal types property in the
usual sense; for arbitrary expressions there is no unique
“best” type, which may be instantiated to other valid types
(Lemma 1). As is demonstrated in the proof, this is because
typings may be arbitrary with regard to orderings of events;
this has obvious relevance for type inference, as discussed
in Sect. 4. Even more significantly, for type inference and
as a fundamental property of the system, we show that the
equivalence relation on histories is undecidable (Theorem 1).
We begin by demonstrating these latter results.

Lemma 1. History type analysis does not possess a prin-
cipal type property.

Proof. Consider the following function, where e is some
condition:

λf1f2g1g2. if e then (λx.f1(); ev1(c); g1())
else (λx.f2(); ev2(c); g2())

The type of the functions returned in either branch of the

conditional in must be the same type τ
H−→ τ ′. Furthermore,

4

note that their definitions require that ev1(c) and ev2(c)
appear in H, but the ordering of these events in H is not
constrained.

From a type inference perspective, H is the unification
of the following histories, where each hx is the abstracted
history annotation on the function type x:

hf1 ; ev1(c); hg1

hf2 ; ev2(c); hg2

Now, each of the following substitutions is clearly a unifier of
these histories, each yielding a different ordering of events:

φ1 = [ev2(c)/hf1 , ε/hg1 , ε/hf2 , ev1(c)/hg2]

φ2 = [ε/hf1 , ev2(c)/hg1 , ev1(c)/hf2 , ε/hg2]

However, note that the LUB of φ1 and φ2 in an MGU order-
ing would be the identity substitution, which is not a unifier
of the above histories. ut

Theorem 1. The relation JHK = JH ′K is undecidable.

Proof. This question is very similar to the question of
whether two context-free grammars generate the same lan-
guage. That question has been shown undecidable by reduc-
tion to Post’s Correspondence Problem. The set of terminat-
ing traces of a history corresponds to the set of strings gener-
ated by a grammar. Any grammar may easily be mapped on
to a history H with the same terminating traces—recursive
grammar rules may be modeled by history µ’s. The PCP un-
decidability mapping for grammars proceeds by constructing
two grammars G1 and G2 that are equivalent iff an instance
of PCP is solvable. These grammars may be mapped to his-
tories, giving H1 and H2. The only difference in L(G) and
JHK is the presence of unbounded traces in the latter; but, by
observing the construction of H1 and H2, they contain the
identical set of unbounded traces and so for these particular
grammars and histories, L(G1) = L(G2) iff JH1K = JH2K
and a PCP instance has been mapped on to equivalence of
histories. ut

Now, we state our positive results for history type analy-
sis; proofs are given in the Appendix.

Corollary 1. If Γ, H ` e : τ and ε, e →? η, v then η ∈
ˆJHK.

Theorem 2 (Progress). If Γ, H ` e : τ is derivable
and η, e is irreducible with η; H valid, then e is a value.

Theorem 3 (History Type Safety). Well-typed ex-
pressions don’t go wrong in λc

hist.

2.5 Localization of Multiple Histories
So far, we have considered a system with a single, global

history. However, it may be desirable to allow multiple,
distinct histories in programs; as will be discussed in Sect. 5,
events and predicates can be defined that implement distinct
security paradigms, and multiple histories can allow distinct
paradigms to operate in the same program, in a clean and
useable manner. Furthermore, localization of histories to
certain program regions promotes privacy and security. In
this section, we discuss constructs for the implementation
and analysis of multiple localized histories.

2.5.1 Ad-Hoc
In a relevant sense, the parameterization of events and

histories allows a delineation of history information; given
a predicate P (c), it is easy to imagine that the predicate P
can “pick out” those events ev(c) in the history parameter-
ized by c. Certain conventions can sharpen this delineation;
given a trivial extension of the system with n-ary predicates
and events, we can obtain an ad-hoc definition of multiple
localized histories with additional parameters using existing
language constructs. That is, we may adopt a convention
whereby the first parameter of any event and predicate is
a history identifier constant cι. Then, given cι, any predi-
cate P (cι, c̄) is defined to apply only to events of the form
ev(cι, c̄) in the preceding history. Localization of histories is
accomplished with normal scoping constructs, e.g.:

let hid = cι in e

will localize the history identifier cι to e, where it is referred
to as hid . Of course, in this scheme it is possible for cι to
escape from e, and so violate localization, but this flexibility
may be desirable in practice.

In the system λc
hist studied so far, this ad-hoc approach is

limited by the fact that constants are declarative– no history
can be dynamically generated, a capability that may be de-
sirable in practice. However, in the next Section we extend
the system with generative constants, allowing us this level
of expression using the same ad-hoc approach.

2.5.2 By Design
In case multiple histories are used heavily, it may be more

efficient to provide them as part of the basic design of the
system, to include a set of histories in configurations, in-
dexed by unique identifiers, rather than a single history. To
model this, we define a new variation on λhist, called λι

hist.
With histories defined as before, we posit a set of history
identifiers ι as primitives, along with sets of histories in-
dexed by identifiers:

η ∈ H histories
ι ∈ I history identifiers
ς ∈ I → H history indexes

Furthermore, we update the language syntax so that history
identifiers are values, and expressions include constructs for
declaring histories, and referencing them in events and pred-
icates:

e ::= v | e e | eve(e) | Pe(e) | history x in e expressions

Then, taking a declarative view of history naming, we for-
malize pre-processing of programs to resolve history names:

Definition 6. The pre-processing of an expression e, de-
noted L e M, is a function paramaterized by a substitution φ,
that replaces each declared history variable with a distinct
index; so, we have inductively:

L evx(e) M φ = evφx(L e M φ)

L Px(e) M φ = Pφx(L e M φ)

L history x in e M φ = L e M φ[x : ι] ι fresh

along with a homomorphic extension to the other expression
forms.

Finally, configurations are updated to include history in-
dexes instead of histories, and reduction is updated appro-

5

priately:

ς, ev ι(c) → ς[ι : (ς(ι); ev(c))], () (event)
ς, Pι(c) → ς, () if P (c)(ς(ι)) (check)

...

The appropriate extension to the type system is straight-
forward: History identifier annotations on events and predi-
cates are included in history types, and the derivation rules
can be easily be extended to enforce scoping of names. Note
that in this system, it is impossible for valuations of history
names to escape their scope, unlike in the ad-hoc scheme.

3. DYNAMIC CONSTANTS
So far, we have considered events and predicates parame-

terized by statically declared constants. While this is useful,
it falls short of capturing dynamically generated constants,
which are common in programming languages, and are often
important elements of access control models in particular.
For example, a common property of previous language sys-
tems is the guarantee that files are open before they are
read. We can enforce this as follows; first, given a function
open (resp. close) that opens (resp. closes) files, define a
function open ′ (resp. close ′) that appends an ev open (resp.
ev close) event to the history:

open ′ , λx.ev open(x); open(x)

close ′ , λx.ev close(x); close(x)

Then, using a predicate Popen that checks for the appropriate
property, as follows:

Popen(c)(ε) = false

Popen(c)(η; ev open(c)) = true

Popen(c)(η; ev close(c)) = false

Popen(c)(η; ev(c′)) = Popen(c)(η)

we may define a read ′ function that only reads open files:

read ′ , λx.Popen(x); read(x)

However, our basic calculus is inadequate for a realistic
model, in that new files may be dynamically allocated in
practice, while constants cf in the basic system must be
statically declared in the basic calculus. There are numer-
ous other examples from practice, where dynamically gen-
erated program entities are relevant to the program security
analysis. Thus, we introduce extensions to the basic lan-
guage semantics and type system for dynamic generation of
constants, yielding the λhist variant λζ

hist.

3.1 Language Extensions
To obtain dynamic constants in λζ

hist, we make a simple
extension to the syntax and operational semantics of λc

hist.
Specifically, we extend the language of expressions with a
construct for dynamically generating fresh constants:

e ::= · · · | new x in e expressions

This expression form is equipped with the following seman-
tics:

η, new x in e → η, e[c/x] c fresh (gen)

Since these constants are dynamically generated, we must
be careful in the type rules to be faithful to this fact.

3.2 Logical Typing Extensions
Now we extend the λc

hist type system to analyze dynamic
constants in λζ

hist, which is nontrivial. We differentiate be-
tween types of declared constants and dynamically gener-
ated constants, via the use of a new sort of singleton vari-
ables ζ ∈ Vζ , where Vζ is denumerable and disjoint from the
variable sets defined previously:

s ::= α | ζ | c singletons

In the type analysis, any dynamically generated constant
will be assigned a {ζ} type. Since functions may generate
fresh constants within their scope with the new x in e con-
struct, we redefine functions types to the following form:

∇ζ̄.τ1
H−→ τ2

Here, ζ̄ may occur free in τ1, H, or τ2; we write fvζ(τ)
to denote the set of free variables of this sort in τ . The
vector ζ̄ specifies the types of constants that will be freshly
generated by application of the function, and will themselves
be freshly instantiated in typings. For brevity, we write

τ
H−→ τ ′ for ∇∅.τ

H−→ τ ′. An analogy to our use of ∇-
binding of ζ variables in λζ

hist for typing freshly generated
constants in the presence of histories, is the use of the ∃
binder on function results in [8] in conjunction with a linear
logic.

We also extend the language of history types with a sim-
ilar binding construct:

H ::= · · · | ∇ζ̄.H history types

We use this form of binding in history annotations to yield
greater flexibility in the type system, an issue that is dis-
cussed in more detail below. The history transition relation
is extended to accommodate this new form:

∇ζ̄.H
ε−→ H[c̄/ζ̄] c̄ fresh

Interpretation of histories is defined as before. With the
addition of ∇-binding, we must be explicit about the inter-
pretation of types, and type equality:

Definition 7. Overloading J·K, we inductively define the
interpretation of singletons and types, parameterized by sub-
stitutions φ, as follows:

JαKφ = φ(α)

JζKφ = φ(ζ)

JtKφ = φ(t)

JcKφ = c

JunitKφ = unit

JboolKφ = bool

J{s}Kφ = {JsKφ}

J∇ζ̄.τ1
H−→ τ2Kφ = Jτ1Kφ′

Jφ′(H)K−−−−−→ Jτ2Kφ′

φ′ = φ[c̄/ζ̄], c̄ fresh

Note that interpretation J·K is non-deterministic, in the sense
that we do not specify how to pick c̄ fresh, so any will do.
This entails a careful phrasing of type equality:

Definition 8. We write φ τ = τ ′ iff JτKφ = Jτ ′Kφ is
provable, and τ = τ ′ iff ∀φ.φ τ = τ ′.

The necessary updates to the logical type derivation rules
are given in Fig. 5. The basic Abs and App are replaced with

6

New
Γ; x : {ζ}, H ` e : τ ζ fresh

Γ, H ` new x in e : τ

Abs1

Γ; x : τ1; z : τ1
h−→ τ2, H ` e : τ2 ζ̄ ∩ fvζ(Γ) = ∅ fvζ(τ1, τ2)− fvζ(Γ) = ∅ h fresh

Γ, ∅ ` λzx.e : τ1
µh.∇ζ̄.H−−−−−−→ τ2

Abs2
Γ; x : τ1, H ` e : τ2 ζ̄ ∩ fvζ(Γ) = ∅

Γ, ε ` λx.e : ∇ζ̄.τ1
H−→ τ2

App

Γ, H1 ` e1 : ∇ζ̄.τ ′
H3−−→ τ Γ, H2 ` e2 : τ ′ ζ̄′ fresh

Γ, H1; H2; H3[ζ̄
′/ζ̄] ` e1e2 : τ [ζ̄′/ζ̄]

Figure 5: Logical type rules for generative constants in λζ
hist

the new App, Abs1, and Abs2, and the New rule is intro-
duced. We must restrict ∇-binding for recursive function
types in Abs1 to gain a sound rule: with this weaker rule, a
recursive function cannot itself return a singleton type {ζ}
for a constant ζ generated by the function. The ζ can occur
in H, however, and so a bound µh.∇ζ̄.H is placed on H. For
nonrecursive functions, the more general Abs1 rule may be
used, which allows the return type to be a fresh {ζ}. Note
that the App rule yields fresh ζ̄, ensuring the type system
tracks “newness” when new-constant-generating functions
are used.

Returning to our previous example, and assuming the
same definition of open ′, we can now imagine a function
openfresh that dynamically generates a new file, and opens
it; the type of this function will incorporate ζ variables to
represent the constant freshly generated in its scope:

openfresh , λ .new x in open ′(x)

openfresh : ∇ζ.unit
evopen(ζ)
−−−−−→ {ζ}

The application rule then ensures that fresh ζ variables are
generated at every application point of openfresh. For ex-
ample, a function that uses openfresh twice within its scope
will be assigned a history type that reflects the generation
of two fresh constants:

f , λ .openfresh(); openfresh()

f : ∇ζ1ζ2.unit
evopen(ζ1);evopen(ζ2)
−−−−−−−−−−−−→ {ζ2}

Note also that the return type of f correctly distinguishes
the returned fresh constant.

4. TYPE INFERENCE
We define a type inference algorithm for the generative

constant theory λζ
hist. The type inference rules are given in

Fig. 6. It is a constraint system, generating a conjunction
of equations E. Every term has an obvious typing deriva-
tion with these rules, but the equations must then be solved.
The rules are generally the obvious variations on the logi-
cal typing rules of Figure 5; one exception is App/AppLet:
there are two application rules, the former is always applica-
ble but unification will fail for the case the function returns
a fresh ζ, i.e. if the return type is {ζ}. If a function has
been concretely defined (say via let), the actual type will
be present at application and the more accurate AppLet

may be used which allows for the case of functions return-
ing freshly generated constants. The weaker App still allows
functions to generate fresh constants, since h there can unify
to e.g. h = ∇ζ.ev(ζ), but this ζ is bound in the history
alone and thus cannot occur in the return type. We don’t
consider this restriction that significant in practice, but it is
one source of incompleteness. The Abs rules need to look
into the equation set to make sure variable occurrence re-
strictions are not violated; the easiest way to express that
here is to invoke the unification algorithm.

To solve the equations, we first define a type unification
algorithm unifyτ in Section 4.1, that either fails or returns
a pair φ, EH , where φ is a unifier for the “type part” of E
and EH is the set of history equations H = H ′ imposed by
E.

We postulate existence of an algorithm unifyH that re-
turns a (possibly empty) set of unifiers Φ of history equations
EH . History unification is undecidable as a consequence of
the undecidability of history equivalence, Theorem 1, so any
unifyH algorithm must be an approximation. Also, there
may be no “best” unifier, so a set Φ of unifiers which can col-
lectively be viewed as defining the “best” unifier is returned
by unifyH . Even though the general question is undecidable,
the form of unification equations arising in practice are likely
to be quite specialized, and so there is a likelihood that uni-
fication will work in practice. Unification of word equations
with variables ranging over regular expressions was shown
decidable by Shulz [11]. His algorithm is a generalization of
Makanin’s algorithm [7] for solving word equations. A sub-
ject of future work is how well these algorithms and other
ideas can be adapted to the history unification problem.

Given unifyτ and unifyH , the top-level algorithm unify(E),
which returns a set of unifying substitutions Φ, is defined as
follows:

unify(E) =
let φ1, EH = unifyτ (E) in

let Φ2 = unifyH(EH) in
if Φ2 6= ∅ then Φ2 ◦ φ1 else fail

(Here and below we will implicitly map substitution oper-
ators on to sets of substitutions, so Φ ◦ φ is for example
{φ0 ◦ φ | φ0 ∈ Φ}.)

4.1 Type Unification
The unification algorithm is standard except for the case

7

Var-τ
Γ(x) = τ

Γ, ε `W x : τ/true

Bool
Γ, ε `W b : bool/true

Unit
Γ, ε `W () : unit/true

And
Γ, ε `W ∧ : bool

ε−→ bool
ε−→ bool/true

Or
Γ, ε `W ∨ : bool

ε−→ bool
ε−→ bool/true

Not
Γ, ε `W ¬ : bool

ε−→ bool/true
Const
Γ, ε `W c : {c}/true

Event
Γ, H `W e : τ/E α fresh

Γ, H; ev(α) `W ev(e) : unit/E ∧ τ = {α}

Check
Γ, H `W e : τ/E α fresh

Γ, H; P (t) `W P (e) : unit/E ∧ τ = {α}

New
Γ; x : {ζ}, H `W e : τ/E ζ fresh

Γ, H `W new x in e : τ/E

If
Γ, H1 `W e1 : τ1/E1 Γ, H2 `W e2 : τ2/E2 Γ, H3 `W e3 : τ3/E3

Γ, H1; H2|H3 `W if e1 then e2 else e3 : τ/E1 ∧ E2 ∧ E3 ∧ τ1 = bool ∧ τ2 = τ3

Abs1

Γ; x : t′; z : t′
h−→ t, H `W e : τ/E t′, t, h fresh φ ∈ unify(E) fvζ(φ(τ))− fvζ(φ(Γ)) = ∅ ζ̄ ∩ fvζ(φ(Γ)) = ∅

Γ, ε `W λzx.e : t′
µh.∇ζ̄.H−−−−−−→ t/E ∧ t = τ

Abs2
Γ; x : t, H `W e : τ/E φ ∈ unify(E) ζ̄ ∩ fvζ(φ(Γ)) = ∅

Γ, ε `W λx.e : ∇ζ̄.t
H−→ τ/E

App
Γ, H1 `W e1 : τ1/E1 Γ, H2 `W e2 : τ2/E2 t, h fresh

Γ, H1; H2; h `W e1 e2 : t/E1 ∧ E2 ∧ τ1 = τ2
h−→ t

AppLet

Γ, H1 `W e1 : ∇ζ̄.τ ′
H3−−→ τ/E1 Γ, H2 `W e2 : τ ′′/E2 ζ̄′ fresh

Γ, H1; H2; H3[ζ̄
′/ζ̄] `W e1 e2 : τ [ζ̄′/ζ̄]/E1 ∧ E2 ∧ τ ′ = τ ′′

Let
Γ, H `W e[v/x] : τ/E

Γ, H `W let x = v in e : τ/E

Figure 6: Type inference rules for λhist with generative constants

of the ∇-bound variables. Since each ζ is a fresh constant,
they cannot be unified, unless it is in the context of unifying

two function types, ∇ζ̄1.τ1
H1−−→ τ ′1 = ∇ζ̄2.τ2

H2−−→ τ ′2. And
in this case we don’t know which ζ1 in ζ̄1 is to be matched
with which ζ2 in ζ̄2 if the length of ζ̄ is greater than one.
This matching must thus be done lazily as a post-processing
operation after unifyτ has completed. To simplify the pre-
sentation here, we will restrict ourselves to function types
with at most one ζ bound, allowing ourselves to skip the
post-processing phase.

The type unification algorithm is given in Figure 7. It
assumes each variable ζ in a ∇-bound in the original equa-
tions E is unique, and also distinct from any free ζ. And, we
assume there a predicate bound(ζ) that holds iff ζ is bound
and not free. The substitution φ produced, when applied,
assumes ∇ does not bind ζ̄.

Lemma 2. unifyτ is a total, computable function.

Lemma 3 (Soundness of unifyτ). φ(τ1) = φ(τ2) for
φ = unifyτ (E) and τ1 = τ2 ∈ E.

4.2 Soundness of Type Inference

Lemma 4 (Soundness of type inference). Suppose
Γ, H `W e : τ/E and Φ = unify(E); then, φ(Γ), φ(H) ` e :
φ(τ) is derivable for each φ ∈ Φ.

The inference algorithm is not complete in two respects,
as alluded to above: history unification is undecidable and
thus unifyH must be incomplete, and functions returning
fresh constants in their return types, {ζ}, cannot be used in
a fully higher-order manner.

5. APPLICATIONS
We have thus far treated predicates abstractly; for a con-

crete predicate language the type system must be equipped
with a sound decision procedure for determining their valid-
ity. Recall that the predicates P (c) are subterms of the final
history type H, and the history type is valid iff all histories
that could precede P (c) hold for P (c). Since history typ-
ings approximate all possible histories that may transpire
at run-time and history types may contain subterms µh.H,
there may be an infinite number of histories, and it may
be nontrivial to decide the validity of the predicates over
this infinite set. Fortunately, the theory is over-expressive
in that for many cases it is not difficult to compute history
validity. For many cases it suffices to show that a finite
subset of Jµh.HK is valid with respect to concrete history
predicates; the full interpretation then holds by implication.
One principled approach here is to approximate history type
interpretations from the bottom up—to consider the short-
est histories contained therein (the basis), followed by the

8

unifyτ (∅) = ∅, ∅

unifyτ (E ∪ {τ1 = τ1}) = unifyτ (E)

unifyτ (E ∪ {{s1} = {s2}}) =
if s1 = s2 then unifyτ (E)
else if s1 = α1 and s2 = α2 then unifyτ (E[α1/α2]) ◦ [α1/α2]
else fail

unifyτ (E ∪ {t = τ}) =
if τ is t then unifyτ (E)
else if t occurs in τ then fail
else let φ, EH = unifyτ (E[τ/t]) in φ ◦ [τ/t], EH

unifyτ (E ∪ {∇ζ̄1.τ1
H1−−→ τ ′1 = ∇ζ̄2.τ2

H2−−→ τ ′2}) =
let φ, EH = unifyτ ((E ∪ {τ1 = τ2, τ2 = τ ′2)[ζ̄1/ζ̄2]) in

φ, EH ∪ {∇ζ̄1.H1 = ∇ζ̄2.H2}

Figure 7: Type unification algorithm

histories built on those, etc. Recalling that histories µh.H
occur as annotations on recursive functions f , the basis of
µh.H is informally those histories in its interpretation that
result when f executes its basis. Informally, this set is ob-
tained by disjoining all the h-variable-free “paths” through
H; for example:

basis(µh.ev1 | h | ev2; (µh′.ev3 | ev4; h
′)) = ev1 | ev2; ev3

A normal form of histories, called µ-dnf, is useful in defining
a basis. (For the remainder of this section, we work in the
basic theory λc

hist for simplicity.)

Definition 9 (µ-dnf). A history H is in µ-dnf iff H =
H1| . . . |Hn, at most one Hi may be ε, and each other Hi is
of the form Hi1; . . . ; Hini and each Hij is either ev(s), P (s),
h, or µh.H ′, for H ′ inductively in µ-dnf.

Definition 10 (µdnf (H)). Let µdnf (H) be a function
that maximally rewrites H according to the following rules
and their symmetrical counterparts:

(H1|H2); H3 ⇒ H1; H3|H2; H3

H1; ε ⇒ H1

ε|ε ⇒ ε

Lemma 5. µdnf (H) is in µ-dnf and Jµdnf (H)K = JHK.

Some auxiliary definitions are used to define the basis.

1. µh.H is µ-innermost iff H contains no µ-abstracted
subhistories.

2. The bases of a history disjunction is the disjunction of
the h-free histories in it:

bases(H1 | · · · | Hn) = H ′
1 | · · · | H ′

j

such that ∀0 < i ≤ j.H ′
i ∈ {H1, . . . , Hn}∧ fv(H ′

i) = ∅.
If j = 0, then the value is a new distinguished history
type ↑; for closure we also add bases(↑) = µdnf (↑) =↑.

We now can define the basis of a history type.

Definition 11. The basis of a history H, basis(H), is
defined as follows.

basis(H) =
let H ′ = µdnf (H) in
H ′[µbasis(µh1.H1)/µh1.H1, . . . , µbasis(µhn.Hn)/µhn.Hn]

where µh1.H1, . . . , µhn.Hn are the µ-subterms in H ′,
and where:

µbasis(µh.H) =

{
bases(µdnf (H)) if H is µ-innermost
bases(basis(H)) if H is not µ-innermost

We now may define the nth unrolling of a µ-bound history
µh.H, written �n µh.H, as follows. The nth unrolling intu-
itively represents the histories that may result in an n-deep
recursive call tree of the function f that µh.H annotates. In
case the history has a basis, we consider that first and then
subsequent, recursive paths, while if the history has no basis
we consider unrollings of the recursive cases.

Definition 12. The nth µ-unrolling �n is inductively
defined as follows:

�0 µh.H = basis(H) if basis(H) 6=↑
�0 µh.H = H[↑ /h] if basis(H) =↑
�n µh.H = H[�n−1 H/h]

Note that histories of the form ↑; H are stuck with respect to
the transition rules; this is just what we want, since when
that symbol is encountered we are assuming it is a place-
holder for a divergent history, so anything after that point
cannot be reached.

Now, we define our approximation of a history H, written
bHc, in terms of unrolling. We assume that H is in µ-dnf.
In every case the function is homomorphic, except the µ case
of course, which is defined as follows:

bµh.H1| · · · |Hnc
=

b�0 µh.H1| · · · |Hnc | · · · | b�n µh.H1| · · · |Hnc

Let’s assume a history µh.H1| · · · |Hn annotates a function
f . Each of these Hi are history types associated with the
control flow paths that that can be taken in a recursive call

9

tree of f , so if we consider those recursive call trees that are
up to n-deep with respect to f , the interpretation of histories
ensures we will include all possible orderings of each path
Hi taken at least once. The significance of this is that some
security properties remain invariant over multiple inclusions
of the same groups of events, or groups of ordered events, in
histories, as we discuss in more detail below. Thus, if we’ve
seen the n-deep recursive call trees, we’ve essentially seen
them all, since any deeper will ensure that some path Hi is
taken more than once.

Now, we can observe that certain security paradigms pos-
sess the property that for predicates P and histories H in
that paradigm, validity of bHc implies validity of H, where
n is the maximal degree of H. Since JbHcK is clearly finite,
this yields a decidable validity check for history predicate
types in models which are insensitive to repetitions of the
same sequence of events.

5.1 Stack Inspection
Stack inspection is a well-studied security model, from

both static and dynamic perspectives [10, 15]. Due to lack of
space we assume the reader has some familiarity with it, and
refer her to the previous citations otherwise. As an example
to demonstrate the use and expressiveness of our system, we
define an encoding of the stack inspection model λsec defined
in [10]. We consider only unparameterized privileges, as in
the current state-of-the-art for static stack inspection, but
our parameterized events and predicates plus the singleton
kind types should allow parameterized privileges to also be
expressed, giving a more powerful analysis than [10].

We begin by instantiating our system with concrete events
pushr, where r is an individual privilege, pushp, where p is a
principal associated with a set of privileges, and pop. These
events are added to the program history during execution,
where they may be interpreted as stack operations by the
function stackify , defined as follows:

stackify(ε) = ε

stackify(η; pushr) = stackify(η).r

stackify(η; pushp) = stackify(η).p

stackify(η; pop) = let s.x = stackify(η) in s

stackify takes a history and matches push with pop to pro-
duce the final stack state—this shows how having an event
history gives strictly more information than an event stack.
What remains is to define an appropriate encoding of λsec

expressions. Recall that the informal semantics for a check
on resource r is to walk back up the stack, making sure each
principal p on the stack is authorized for r, until an enable
of r is encountered. The predicate inspectr implements this
policy by holding for stacks of that form only.

L check r then e M = inspectr ◦ stackify ; L e M
L enable r in e M = pushr; (let x = L e M in pop; x) x fresh

L p.e M = pushp; (let x = L e M in pop; x) x fresh

L fix z.λx.e M = λzx.L e M
L e1e2 M = L e1 ML e2 M

...

Repeating a pattern of recursion already present on the stack
will not affect the validity of stack inspection, thus we may
soundly use the history approximation to test validity of

stack typings:

Lemma 6. Let e be a λsec expression. If Γ, H ` L e M : τ ,
then validity of bHc implies validity of H.

5.2 History-Based Access Control
In the history-based approach of Abadi and Fournet [1],

regions of source code are associated with sets of privileges,
and when region boundaries are crossed, a history tracks the
security effect by intersecting the rights of the old and new
regions; when a privilege is checked, it is in fact checked for
membership in this intersection of rights. Here, we model
their essential system, and define a static analysis for it, as
an instance of our system.

First, we posit sets of atomic privileges p that may be
associated with any source code; in particular, we imagine
that these privileges annotate function bodies:

λzx.p.e

We implement any such function f in our system by an
encoding L f M, which adds an event labeled with privileges
p to the history:

L λzx.p.e M = λzx.evp; e

Furthmore, as was the case with stackify above, we define a
function that converts a sequence of events in a history to
its interpretation in the model:

intersect(evp1 ; . . . ; evpn) = pn ∧ · · · ∧ p1

Finally, we may implement any privilege check demandr, pa-
rameterized by constants c, as the composition of intersect
and a membership check:

L demandr(c) M = (λx.r(c) ∈ x) ◦ intersect

Since repeating the same event will have no effect on the
validity of these intersections, we may also use the history
approximations here:

Lemma 7. Let e be a history-based access control expres-
sion; if Γ, H ` L e M : τ , then validity of bHc implies validity
of H.

Acknowledgements
The authors would like to acknowledge Rao Kosaraju’s con-
tribution of a direct construction of the grammars used to
prove undecidability of equivalence on context-free languages.

6. REFERENCES
[1] Mart́in Abadi and Cédric Fournet. Access control

based on execution history. In Proceedings of the 10th
Annual Network and Distributed System Security
Symposium (NDSS’03), feb 2003.

[2] Robert DeLine and Manuel Fahndrich. Enforcing
high-level protocols in low-level software. In SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI01), pages 59–69, 2001.

[3] D. Harel. Dynamic logic. In D. Gabbay and
F. Guenther, editors, Handbook of Philosophical Logic
Volume II — Extensions of Classical Logic, pages
497–604. D. Reidel Publishing Company: Dordrecht,
The Netherlands, 1984.

10

[4] Atsushi Igarashi and Naoki Kobayashi. Resource
usage analysis. In Conference Record of POPL’02:
The 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 331–342,
Portland, Oregon, January 2002.

[5] T. Jensen, D. Le Métayer, and T. Thorn. Verification
of control flow based security properties. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy, 1999.

[6] Pierre Jouvelot and David Gifford. Algebraic
reconstruction of types and effects. In Conference
Record of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, Orlando,
Florida, pages 303–310. ACM Press, 1991.

[7] G. S. Makanin. The problem of solvability of
equations in a free semigroup. Math. USSR Sbornik,
32:129–198, 1977.

[8] Yitzhak Mandelbaum, David Walker, and Robert
Harper. An effective theory of type refinements. In
Proceedings of the the Eighth ACM SIGPLAN
International Conference on Functional Programming
(ICFP’03), Uppsala, Sweden, August 2003.

[9] Jeff Polakow. Ordered linear logic and applications.
Technical Report CMU-CS-01-152, Carnegie Mellon
University, 2001.

[10] François Pottier, Christian Skalka, and Scott Smith. A
systematic approach to static access control. In David
Sands, editor, Proceedings of the 10th European
Symposium on Programming (ESOP’01), volume 2028
of Lecture Notes in Computer Science, pages 30–45.
Springer Verlag, April 2001.

[11] K.U. Schulz. Makanin’s algorithm: Two improvements
and a generalization. In Word Equations and Related
Topics, volume 572 of Lecture Notes in Computer
Science, 1990.

[12] Chris Stone. Singleton types and singleton kinds.
Technical Report CMU-CS-00-153, Carnegie Mellon
University, 2000.

[13] Jean-Pierre Talpin and Pierre Jouvelot. The type and
effect discipline. In Seventh Annual IEEE Symposium
on Logic in Computer Science, Santa Cruz,
California, pages 162–173, Los Alamitos, California,
1992. IEEE Computer Society Press.

[14] David Walker. A type system for expressive security
policies. In Conference Record of POPL’00: The 27th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 254–267, Boston,
Massachusetts, January 2000.

[15] Dan S. Wallach and Edward Felten. Understanding
Java stack inspection. In Proceedings of the 1998
IEEE Symposium on Security and Privacy, May 1998.

APPENDIX
In this section we present the proofs of Theorem 2, Theo-
rem 3, and Corollary 1. The technique is standard, with
adaptations for histories; it is similar to a subject reduction
approach, but reduction does not preserve history typings
per se, rather we must define an invariant that holds.

First, we restate the usual substitution Lemma which is
useful in the application case of our main utility Lemma
(Lemma 12); the proof follows by structural induction on

type derivations:

Lemma 8. If both Γ; x : τ ′, H ` e : τ and Γ, ε ` v : τ ′ are
derivable, then so is Γ, H ` e[v/x] : τ ′.

We must also state a separate substitution result for re-
cursive substitution, since unrollings do not quite preserve
history typings:

Lemma 9. If both Γ; z : τ1
h→ τ2, H ` e : τ2 and Γ, ε `

λzx.e : τ1
µh.H−→ τ2 is derivable, then so is Γ, H[µh.H/h] `

e[v/x] : τ2.

We give a standard substitution result for evaluation con-
texts, which follows by structural induction on contexts:

Lemma 10. If Γ, H1; H2 ` E[e] : τ is derivable with sub-
derivation Γ′, H1 ` e : τ ′ for e in the hole, and Γ′, H ′

1 ` e′ :
τ ′ is derivable, then Γ, H ′

1; H2 ` E[e′] : τ is derivable.

It will also be useful to observe the following property of
typings, essentially that the history type associated with a
redex in context will be the “earliest history” for the con-
text. This is intuitively correct, and follows immediately
by definition of evaluation contexts and associated typing
rules, which place the histories associated with redex reduc-
tion leftmost in the history of larger contexts.

Lemma 11. If Γ, H ` E[e] : τ is derivable with e a redex,
then H = H1; H2 with Γ′, H1 ` e : τ ′ a subderivation for e
in the hole.

Now, as alluded to above, we proceed by observing an
invariant preserved during reduction. We argue that his-
tory types represent an approximation of the histories oc-
curring during evaluation; in fact, as evaluation progresses,
more and more of the “true” history is reified in the con-
figuration, sans predicate annotations, with the associated
approximation “chewed off” the history typings in result-
ing expressions. This intuitive description of the relevant
invariant is formalized as the relation w:

Definition 13. We write H ′ w H iff for all a0 · · · anθ ∈
JHK there exists θ′θ ∈ H ′ such that a0; . . . ; an = θ̂′.

The following consequences of this definition are noted; prop-
erty (2) holds by property (1), since Jµh.HK ⊇ JH[µh.H/h]K.

Corollary 2. The following properties hold:

1. If JHK ⊆ JH ′K then H ′ w H

2. For closed µh.H, we have that µh.H w H[µh.H/h].

3. If H ′ w H then validity of H ′ implies validity of H.

Now we may demonstrate our central utility Lemma, which
uses the relation w to specify the relevant typing property
preserved during evaluation. For brevity we restrict our-
selves to the interesting cases:

Lemma 12. If Γ, H ` e : τ is derivable and η, e → η′, e′,
then Γ, H ′ ` e′ : τ is derivable with η; H w η′; H ′.

Proof. By case analysis on →.
Case β. In this case the following assertions hold by as-

sumption:

e = (λzx.e)v e′ = e[v/x][λzx.e/z] η′ = η

11

Furthermore, by definition of the typing rules we may par-
tially reconstruct the derivation of Γ, H ` e : τ as follows,
with H = µh.H ′′:

Γ; x : τ ′; z : τ ′
h→ τ, H ′′ ` e : τ h fresh

Γ, ε ` λzx.e : τ ′
H→ τ Γ, ε ` v : τ

Γ, H ` (λzx.e)v : τ

But then by Lemma 8 and Lemma 9 we have that:

Γ, H ′′[H/h] ` e′ : τ

is derivable, and by Corollary 2 we have H w H ′′[H/h], so
clearly η; H w η′; H ′′[H/h], since η = η′.

Case event . In this case the following assertions hold by
assumption:

e = ev(c) e′ = () η′ = η; ev(c)

Furthermore, by definition of the typing rules we can recon-
struct the following derivation:

Γ, ε ` c : {c}
Γ, ev(c) ` ev(c) : unit

Therefore the following assertions hold in this case:

H = ev(c) τ = unit Γ, ε ` e′ : unit

and η; ev(c) w η′; ε by implication and Corollary 2, so this
case holds.

Case check . In this case the following assertions hold by
assumption:

e = P (c) e′ = () η′ = η

Furthermore, by definition of the typing rules we can recon-
struct the following derivation:

Γ, ε ` c : {c}
Γ, P (c) ` P (c) : unit

Therefore the following assertions hold:

H = P (c) τ = unit Γ, ε ` e′ : unit

and η; P (c) w η; ε by definition, so this case holds.
Case context . In this case the following assertions hold by

assumption and Lemma 11:

e = E[e1] with e1 a redex e′ = E[e2] η, e1 → η′, e2

H = H1; H2 Γ′, H1 ` e1 : τ ′

Furthermore, by the other cases of this Lemma and Lemma 10
we have:

Γ′, H ′
1 ` e2 : τ ′ η; H1 w η′; H ′

1 Γ′, H ′
1; H2 ` E[e2] : τ

and η; H1; H2 w η′; H ′
1; H2 by implication, so this case holds.

ut

Given the preceding, proofs of the results stated in the
main paper text are straightforward:

Corollary 1. If Γ, H ` e : τ and ε, e →? η, v then η ∈
ˆJHK.

Proof. By Lemma 12 and induction on the length of

the reduction we have that H w η; since η = JηK = ˆJηK, the
result follows. ut

Theorem 2 (Progress). If Γ, H ` e : τ is derivable
and η, e is irreducible with η; H valid, then e is a value.

Proof. (Sketch): The proof proceeds by contradiction
and case analysis on stuck expressions. In almost all cases,
the proof follows in the same manner as analogous well-
known results for functional calculi with constants; the novel
case is e = E[P (c)], which reduces to absurdity since validity
of η; H implies validity of P (c)(η) and therefore reducibility
of η, E[P (c)]. ut

Theorem 3 (History Type Safety). Well-typed ex-
pressions don’t go wrong in λc

hist.

Proof. Suppose on the contrary that ε, e →n η, e′ with
η, e′ stuck. Since e is well-typed, there exists a derivable
judgement Γ, H ` e : τ with valid H by definition. Fur-
thermore, by Lemma 12 and induction on n we have that
Γ, H ′ ` e′ : τ such that H w η; H ′. But since H is valid,
therefore η; H ′ must also be valid by Corollary 2; hence e is
a value by Theorem 2, which is a contradiction. ut

12

