
The Nuggetizer: Abstracting
Away Higher-Orderness for

Program Verification

Paritosh Shroff

Department of Computer Science
Johns Hopkins University

Joint work with Christian Skalka (University of Vermont)
and Scott F. Smith (Johns Hopkins University)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

2

Objective
Prove non-trivial inductive properties about

higher-order programs
Statically
Automatically
Without any programmer annotations

Exemplar: Value range analysis for higher-
order functional programs

Inferring the range of values assignable to integer
variables at runtime

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

3

Example: Factorial Program

let f = λfact. λn. if (n != 0) then
n * fact fact (n - 1)

else 1
in f f 5

Focus of rest of the talk: Verify range of n is [0, 5]

Recursion encoded
by “self-passing”

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

4

Motivation

Higher-Order Functional Programming
Powerful programming paradigm
Complex from automated verification standpoint

Actual low-level operations and the order in which
they take place are far removed from the source code,
especially in presence of recursion, for example, via
the Y-combinator

The simpler first-order view is easiest for
automated verification methods to be applied to

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

5

Our Approach
Abstract Away the Higher-Orderness

Distill the first-order computational structure from
higher-order programs into a nugget
Preserve much of other behavior, including

Control-Flow (Flow-Sensitivity + Path-Sensitivity)
Infinite Datatype Domains
Other Inductive Program Structures

Feed the nugget to a theorem prover to prove
desirable properties of the source program

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

6

A Nugget

Set of purely first-order inductive definitions
Denotes the underlying computational
structure of the higher-order program

Characterizes all value bindings that may arise
during corresponding program’s execution

Extracted automatically by the nuggetizer
from any untyped functional program

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

7

Example: Factorial Program

let f = λfact. λn. if (n != 0) then
n * fact fact (n - 1)

else 1
in f f 5

Property of interest: Range of n is [0, 5]

Nugget at n: { n a 5, n a (n - 1)n != 0 }

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

8

Example: Factorial Program

let f = λfact. λn. if (n != 0) then
n * fact fact (n - 1)

else 1
in f f 5

Property of interest: Range of n is [0, 5]

Nugget at n: { n a 5, n a (n - 1)n != 0 }

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

9

Example: Factorial Program

let f = λfact. λn. if (n != 0) then
n * fact fact (n - 1)

else 1
in f f 5

Property of interest: Range of n is [0, 5]

Nugget at n: { n a 5, n a (n - 1)n != 0 }
Guard: A precondition on the usage of the mapping

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

10

Denotation of a Nugget

The least set of values implied by the mappings
such that their guards hold

{ n a 5, n a (n - 1)n != 0 }
⇓

{ n a 5, n a 4, n a 3, n a 2, n a 1, n a 0 }
n a -1 is disallowed as n a 0 does not satisfy the guard (n != 0),

analogous to the program’s computation

Range of n is denoted to be precisely [0, 5]

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

11

Nuggets in Theorem Provers

Nuggets are automatically translatable to
equivalent definitions in a theorem prover

Theorem provers provide built-in mechanisms for
writing inductive definitions, and automatically
generating proof strategies thereupon

We provide an automatic translation scheme
for Isabelle/HOL

We have proved 0 ≤ n ≤ 5 and similar properties
for other programs

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

12

Summary of Our Approach

Source Code
(Higher-Order)

Nugget
(First-Order)

Theorem
Prover

extract feed into

Program
Properties

prove

automatic

automaticautomatic

automatic
prove

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

13

The Nuggetizer
Extracts nuggets from higher-order programs
via a collecting semantics

Incrementally accumulates the nugget over an
abstract execution of the program

= 0CFA + flow-sensitivity + path-sensitivity
Abstract execution closely mimics concrete
execution
Novel prune-rerun technique ensures
convergence and soundness in presence of
flow-sensitivity and recursion

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

14

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

Abstract Call Stack

Abstract Environment

empty

f a (λfact. λn. …), f′a (λn. …), fact a f,
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

A-normal form – each program point has an associated variable

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

15

Illustration of the Nuggetizer

f a (λfact. λn. …), f′a (λn. …), fact a f,
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Collect the let-binding in the abstract environment

Abstract Environment

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Abstract Call Stack

emptyredex

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

16

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

redex

Invoke (λfact. λn. …) on f, and place it in the call stack

Abstract Call Stack

(λfact. λn. …)

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

17

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

Pop (λfact. λn. …), and return (λn. …) to f′

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

empty

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

18

Illustration of the Nuggetizer
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Invoke (λn. …) on 5, and place it in the call stack

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

19

Illustration of the Nuggetizer
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Analyze the then and else branches in parallel

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

20

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

Invoke (λfact. λn. …) on fact under the guard n != 0

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)
(λfact. λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

21

Illustration of the Nuggetizer
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Pop (λfact. λn. …), and return (λn. …) to fact′

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

22

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

23

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

Prune (ignore) the recursive invocation of (λn. …)

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

24

r only serves as a placeholder for the return value of the recursive call

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Illustration of the Nuggetizer

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

r and, transitively, r′
have no concrete

bindings, as of now

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

25

Illustration of the Nuggetizer
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Merge the results of the two branches, tagged with appropriate guards

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

(λn. …)

r and, transitively, r′
now have concrete

bindings

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

26

Illustration of the Nuggetizer
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Pop (λn. …), and return r to z

redex

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

Abstract Call Stack

empty

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

27

Illustration of the Nuggetizer

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Abstract Environment

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Abstract Call Stack

empty

The abstract execution terminates

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

28

Illustration of the Nuggetizer

Nugget

f a (λfact. λn. …), fact a f, f′a (λn. …),
fact a factn != 0, fact′a (λn. …),

n a 5, n a (n - 1)n != 0,
r′a r, r a (n * r′)n != 0, r a 1n == 0, z a r

Nugget: The least fixed-point of the abstract environment

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in

n * r′
else 1

in r
in let f′ = f f in
in let z = f′ 5 in

z

Abstract Call Stack

empty
Fixed-point of the abstract

environment -- observable by
rerunning abstract execution

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

29

Can also contribute new mappings

Especially in presence of higher-order recursive
functions which themselves return functions

Rerunning Abstract Execution

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

30

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Illustration of Rerunning for
Convergence

Abstract Call Stack

emptyHigher-order recursive
function itself returning

functions

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

31

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Illustration of Rerunning for
Convergence

Abstract Call Stack

(λn. …)

During the initial run

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

redex

Prune the recursive invocation of (λn. …), as before

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

32

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Illustration of Rerunning for
Convergence

Abstract Call Stack

(λn. …)

redex

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

No concrete binding for r′,
the analysis simply skips

over the redex ‘r′ ()’

Skip over the call-site r′ ()

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

33

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Illustration of Rerunning for
Convergence

Abstract Call Stack

(λn. …)

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

Merge the results of the two branches, tagged with appropriate guards

r′ now has concrete bindings,
but no binding for r′′

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

34

let f = λfact. λn. let r = if (n != 0) then
let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Illustration of Rerunning for
Convergence

Abstract Call Stack

empty

End of the initial run

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

35

Illustration of Rerunning for
Convergence
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Abstract Call Stack

(λn. …)

During the rerun

Abstract Environment
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

r′ has concrete
bindings

redex

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

36

Illustration of Rerunning for
Convergence
let f = λfact. λn. let r = if (n != 0) then

let fact′ = fact fact in
let r′ = fact′ (n - 1) in
let r′′ = r′ () in

λx. (n * r′′)
else λy. 1

in r
in let f′ = f f in
in let z = f′ 5 in
in let z′ = z () in

z′

Nugget
f a (λfact. λn. …), fact a f, f′a (λn. …),

fact a factn != 0, fact′a (λn. …),
n a 5, n a (n - 1)n != 0,

r′a r, r a (λx. n * r′′)n != 0, r a (λy. 1)n == 0,
z a r, x a (), y a (), z′a (n * r′′)n != 0, z′a 1n == 0,
x a ()n != 0, y a ()n != 0, r′′a (n * r′′)n != 0, r′′a 1n == 0

Abstract Call Stack

empty

End of the rerun

Now a fixed-point of the
abstract environment --
observable by rerunning

abstract execution

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

37

However…

Number of reruns required to reach a fixed-
point is always (provably) finite
Abstract environment is monotonically increasing
across runs
Size of abstract environment is strongly bound

Domain, range and guards of all mappings are
fragments of the source program

All feasible mappings will eventually be collected
after some finite number of reruns, and a fixed-point reached

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

38

Properties of the Nuggetizer

Soundness Nugget denotes all values that
may arise in variables at runtime

Termination Nuggetizer computes a nugget for
all programs

Runtime Complexity Runtime complexity of
the nuggetizer is O(n!·n3), where n is the size
of a program

We expect it to be significantly less in practice

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

39

Related Work
No direct precedent to our work

An automated algorithm for abstracting arbitrary higher-
order programs as first-order inductive definitions

o A logical descendent of 0CFA [Shivers’91]
o Dependent, Refinement Types [Xi+’05, Flanagan+’06]

o Require programmer annotations
o Our approach: No programmer annotations

o Logic Flow Analysis [Might’07]
o Does not generate inductive definitions
o Invokes theorem prover many times, and on-the-fly

o Our approach: only once, at the end

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

40

Currently working towards

Completeness
A lossless translation of higher-order programs to
first-order inductive definitions

(The current analysis is sound but not complete)

Incorporating Flow-Sensitive Mutable State
Shape-analysis of heap data structures

Prototype Implementation

Thank You

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

42

Example of Incompleteness

let f = λsort. λx. λlimit. if (x < limit) then
sort sort (x + 1) (limit - 1)

else 1
in f f 0 9

Range of x is [0, 5] and range of limit is [4, 9]

Nugget at x and limit:
{ x a 0, x a (x + 1)x < limit, limit a 9, limit a (limit - 1)x < limit }

⇓
{ x a 0, …, x a 9, limit a 9, …, limit a 0 }

Correlation between order of assignments to x and limit is lost

Inspired by bidirectional bubble sort

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

43

External Inputs
let f = λfact. λn. if (n != 0) then

n * fact fact (n - 1)
else 1

in if (inp ≥ 0) then
f f inp

Property of interest: Symbolic range of n is [0, …, inp]
Nugget at n: { n a inpinp ≥ 0, n a (n - 1)n != 0 }

⇓
{ n a inp, n a inp - 1, …, n a 0 }

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

44

A more complex example
Z = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

let f′ = λfact. λn. if (n != 0) then
n * fact (n - 1)

else 1
in Z f′ 5

Nugget at n:
{ n a 5, n a y, y a (n - 1)n != 0 } ≡ { n a 5, n a (n - 1)n != 0 }

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

45

Another complex example
let g = λfact′. λm. fact′ fact′ (m - 1) in
let f = λfact. λn. if (n != 0) then

n * g fact n
else 1

in f f 5

Nugget at n and m: { n a 5, m a nn != 0, n a (m – 1) }
⇓

{ n a 5, n a 4, n a 3, n a 2, n a 1, n a 0 }
{ m a 5, m a 4, m a 3, m a 2, m a 1 }

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

46

General, End-to-End
Programming Logic

let f = λfact. λn. assert (n ≥ 0);
if (n != 0) then

n * fact fact (n - 1)
else 1

in f f 5

assert (n ≥ 0) would be compiled down to a theorem,
and automatically proved by the theorem prover
over the automatically generated nugget

Many asserts are implicit
Array bounds and null pointer checks

29 Nov 2007, APLAS Abstracting Away Higher-Orderness for
Program Verification

47

Methodology by Analogy

Program Model Checking Our Approach

Abstraction
Model Finite Automaton

Model Checking

Faster

First-Order Programs,
Non-Inductive Properties

First-Order Inductive
Definitions (Nugget)

Verification
Method Theorem Proving

Pros Higher-Order Programs,
Inductive Properties

Cons Slower

	The Nuggetizer: Abstracting Away Higher-Orderness for Program Verification
	Objective
	Example: Factorial Program
	Motivation
	Our Approach
	A Nugget
	Example: Factorial Program
	Example: Factorial Program
	Example: Factorial Program
	Denotation of a Nugget
	Nuggets in Theorem Provers
	Summary of Our Approach
	The Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Illustration of the Nuggetizer
	Rerunning Abstract Execution
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	Illustration of Rerunning for Convergence
	However…
	Properties of the Nuggetizer
	Related Work
	Currently working towards
	Example of Incompleteness
	External Inputs
	A more complex example
	Another complex example
	General, End-to-End Programming Logic
	Methodology by Analogy

