The Nuggetizer: Abstracting Away Higher-Orderness for Program Verification

Paritosh Shroff

Department of Computer Science Johns Hopkins University

Joint work with Christian Skalka (University of Vermont) and Scott F. Smith (Johns Hopkins University)

Objective

Prove non-trivial *inductive* properties about *higher-order* programs

- Statically
- Automatically
- Without any programmer annotations

Exemplar: Value range analysis for higherorder functional programs

Inferring the range of values assignable to integer variables at runtime

Focus of rest of the talk: Verify range of n is [0, 5]

Motivation

Higher-Order Functional Programming

- Powerful programming paradigm
- Complex from automated verification standpoint
 - Actual low-level operations and the order in which they take place are far removed from the source code, especially in presence of recursion, for example, via the Y-combinator

The simpler first-order view is easiest for automated verification methods to be applied to

Our Approach

- Abstract Away the Higher-Orderness
 - Distill the first-order computational structure from higher-order programs into a *nugget*
 - Preserve much of other behavior, including
 - Control-Flow (Flow-Sensitivity + Path-Sensitivity)
 - Infinite Datatype Domains
 - Other Inductive Program Structures
- Feed the nugget to a theorem prover to prove desirable properties of the source program

A Nugget

- Set of purely first-order inductive definitions
- Denotes the underlying computational structure of the higher-order program
 - Characterizes all value bindings that may arise during corresponding program's execution
- Extracted automatically by the *nuggetizer* from any untyped functional program

let f = λ fact. λ n. if (n != 0) then n * fact fact (n - 1) else 1 in f f 5

Property of interest: Range of n is [0, 5]

Nugget at n: { $n \mapsto 5, n \mapsto (n - 1)^{n != 0}$ }

let $f = \lambda fact$. λn . if (n != 0) then n * fact fact (n - 1)else 1

in f f <mark>5</mark>

Property of interest: Range of n is [0, 5]

Nugget at n: { $n \mapsto 5$, $n \mapsto (n - 1)^{n != 0}$ }

let $f = \lambda fact$. λn . if (n != 0) then n * fact fact (n - 1)else 1 in f f 5

Property of interest: Range of n is [0, 5]

Nugget at n: { $n \mapsto 5, n \mapsto (n - 1)^{n != 0}$ }

Guard: A precondition on the usage of the mapping

Denotation of a Nugget

The least set of values implied by the mappings such that their guards hold

$$\{ n \mapsto 5, n \mapsto (n - 1)^{n != 0} \}$$

 $\{\,n\mapsto 5,\,n\mapsto 4,\,n\mapsto 3,\,n\mapsto 2,\,n\mapsto 1,\,n\mapsto 0\,\}$

 $n \mapsto -1$ is disallowed as $n \mapsto 0$ does not satisfy the guard ($n \ge 0$), analogous to the program's computation

Range of n is denoted to be *precisely* [0, 5]

Nuggets in Theorem Provers

- Nuggets are automatically translatable to equivalent definitions in a theorem prover
 - Theorem provers provide built-in mechanisms for writing inductive definitions, and automatically generating proof strategies thereupon
- We provide an automatic translation scheme for Isabelle/HOL
 - We have proved 0 ≤ n ≤ 5 and similar properties for other programs

Summary of Our Approach

The Nuggetizer

- Extracts nuggets from higher-order programs via a collecting semantics
 - Incrementally accumulates the nugget over an abstract execution of the program
- = 0CFA + flow-sensitivity + path-sensitivity
 - Abstract execution closely mimics concrete execution
 - Novel *prune-rerun* technique ensures convergence and soundness in presence of flow-sensitivity and recursion

A-normal form – each program point has an associated variable

let f = λ fact. λ n. redex	let r = i	f (n != 0) then let fact' = fact fact in let r' = fact' (n - 1) in n * r' else 1	Abstract Call Stack empty
in let f' = f f in in let z = f' 5 in z	in r	f ↦ (λfact. λn)	Abstract Environment

Collect the let-binding in the abstract environment

Invoke (λ fact. λ n. ...) on f, and place it in the call stack

Pop (λ fact. λ n. ...), and return (λ n. ...) to f'

Invoke (λ n...) on 5, and place it in the call stack

Analyze the then and else branches in parallel

Invoke (λ fact. λ n. ...) on fact under the guard n != 0

Pop (λ fact. λ n. ...), and return (λ n. ...) to fact'

Prune (ignore) the recursive invocation of $(\lambda n...)$

r only serves as a placeholder for the return value of the recursive call

Merge the results of the two branches, tagged with appropriate guards

Pop (λ n. ...), and return r to z

The abstract execution terminates

Nugget: The least fixed-point of the abstract environment

Rerunning Abstract Execution

- Can also contribute new mappings
 - Especially in presence of higher-order recursive functions which themselves return functions

Prune the recursive invocation of $(\lambda n...)$, as before

29 Nov 2007, APLAS

29 Nov 2007, APLAS

However...

Number of reruns required to reach a fixedpoint is always (*provably*) finite

- Abstract environment is monotonically increasing across runs
- Size of abstract environment is strongly bound
 - Domain, range and guards of all mappings are fragments of the source program

All feasible mappings will eventually be collected after some finite number of reruns, and a fixed-point reached

Properties of the Nuggetizer

Soundness Nugget denotes all values that may arise in variables at runtime

- *Termination* Nuggetizer computes a nugget for all programs
- **Runtime Complexity** Runtime complexity of the nuggetizer is $O(n! \cdot n^3)$, where n is the size of a program
 - We expect it to be significantly less in practice

Related Work

- No direct precedent to our work
 - An automated algorithm for abstracting arbitrary higherorder programs as first-order inductive definitions
- A logical descendent of 0CFA [Shivers'91]
- Dependent, Refinement Types [Xi+'05, Flanagan+'06]
 - Require programmer annotations
 - Our approach: No programmer annotations
- Logic Flow Analysis [Might'07]
 - Does not generate inductive definitions
 - Invokes theorem prover many times, and on-the-fly
 - Our approach: only once, at the end

Currently working towards

- Completeness
 - A lossless translation of higher-order programs to first-order inductive definitions

(The current analysis is sound but not complete)

- Incorporating Flow-Sensitive Mutable State
 - Shape-analysis of heap data structures
- Prototype Implementation

Thank You

Example of Incompleteness

Inspired by bidirectional bubble sort

let f = λ sort. λx . λ limit. if (x < limit) then sort sort (x + 1) (limit - 1) else 1

in ff09

Range of x is [0, 5] and range of limit is [4, 9]

Nugget at x and limit:

 $\{ x \mapsto 0, x \mapsto (x + 1)^{x < \text{limit}}, \text{limit} \mapsto 9, \text{limit} \mapsto (\text{limit} - 1)^{x < \text{limit}} \}$

 $\{x \mapsto 0, ..., x \mapsto 9, \text{ limit } \mapsto 9, ..., \text{ limit } \mapsto 0 \}$

Correlation between order of assignments to x and limit is lost

29 Nov 2007, APLAS

External Inputs

let $f = \lambda fact$. λn . if (n != 0) then n * fact fact (n - 1)else 1 in if $(inp \ge 0)$ then f f inp

Property of interest: Symbolic range of n is [0, ..., inp]Nugget at n: { $n \mapsto inp^{inp \ge 0}$, $n \mapsto (n - 1)^{n != 0}$ } \downarrow { $n \mapsto inp$, $n \mapsto inp - 1, ..., n \mapsto 0$ }

A more complex example

 $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$ let f' = λ fact. λ n. if (n != 0) then n * fact (n - 1) else 1 in Z f' 5

Nugget at n: { $n \mapsto 5, n \mapsto y, y \mapsto (n - 1)^{n != 0}$ } \equiv { $n \mapsto 5, n \mapsto (n - 1)^{n != 0}$ }

Another complex example

let g =
$$\lambda$$
fact'. λ m. fact' fact' (m - 1) in
let f = λ fact. λ n. if (n != 0) then
n * g fact n
else 1

in f f 5

 $\begin{array}{l} \text{Nugget at n and m: } \{n \mapsto 5, m \mapsto n^{n \, != \, 0}, n \mapsto (m - 1) \} \\ \downarrow \\ \{n \mapsto 5, n \mapsto 4, n \mapsto 3, n \mapsto 2, n \mapsto 1, n \mapsto 0 \} \\ \{m \mapsto 5, m \mapsto 4, m \mapsto 3, m \mapsto 2, m \mapsto 1 \} \end{array}$

General, End-to-End Programming Logic


```
let f = \lambda fact. \lambda n. assert (n \ge 0);
if (n != 0) then
n * fact fact (n - 1)
else 1
```

in ff5

assert (n ≥ 0) would be compiled down to a theorem, and automatically proved by the theorem prover over the automatically generated nugget

Many asserts are implicit

Array bounds and null pointer checks

Methodology by Analogy

	Program Model Checking	Our Approach
Abstraction Model	Finite Automaton	First-Order Inductive Definitions (Nugget)
Verification Method	Model Checking	Theorem Proving
Pros	Faster	Higher-Order Programs, Inductive Properties
Cons	First-Order Programs, Non-Inductive Properties	Slower